Files
zTC1/mico-os/platform/MCU/RTL8711/platform_init.c
2025-03-11 15:54:45 +08:00

346 lines
10 KiB
C

/**
******************************************************************************
* @file platform_init.c
* @author William Xu
* @version V1.0.0
* @date 05-May-2014
* @brief This file provide functions called by MICO to drive stm32f2xx
* platform: - e.g. power save, reboot, platform initialize
******************************************************************************
* UNPUBLISHED PROPRIETARY SOURCE CODE
* Copyright (c) 2016 MXCHIP Inc.
*
* The contents of this file may not be disclosed to third parties, copied or
* duplicated in any form, in whole or in part, without the prior written
* permission of MXCHIP Corporation.
******************************************************************************
*/
#include "platform_peripheral.h"
#include "platform.h"
#include "platform_config.h"
#include "mico_platform.h"
#include "platform_logging.h"
#include <string.h> // For memcmp
#include "crt0.h"
#include "mico_rtos.h"
#include "platform_init.h"
#ifdef __GNUC__
#include "../../GCC/stdio_newlib.h"
#endif /* ifdef __GNUC__ */
#include "rtl8195a.h"
#include "build_info.h"
#include "PinNames.h"
#include "serial_api.h"
/******************************************************
* Macros
******************************************************/
/******************************************************
* Constants
******************************************************/
#ifndef STDIO_BUFFER_SIZE
#define STDIO_BUFFER_SIZE 64
#endif
/******************************************************
* Enumerations
******************************************************/
/******************************************************
* Type Definitions
******************************************************/
/******************************************************
* Structures
******************************************************/
/******************************************************
* Function Declarations
******************************************************/
extern OSStatus host_platform_init( void );
/******************************************************
* Variables Definitions
******************************************************/
extern platform_uart_t platform_uart_peripherals[];
extern platform_uart_driver_t platform_uart_drivers[];
#ifndef MICO_DISABLE_STDIO
static const mico_uart_config_t stdio_uart_config =
{
.baud_rate = STDIO_UART_BAUDRATE,
.data_width = DATA_WIDTH_8BIT,
.parity = NO_PARITY,
.stop_bits = STOP_BITS_1,
.flow_control = FLOW_CONTROL_DISABLED,
.flags = 0,
};
static volatile ring_buffer_t stdio_rx_buffer;
static volatile uint8_t stdio_rx_data[STDIO_BUFFER_SIZE];
mico_mutex_t stdio_rx_mutex;
mico_mutex_t stdio_tx_mutex;
#endif /* #ifndef MICO_DISABLE_STDIO */
/******************************************************
* Function Definitions
******************************************************/
#if defined ( __ICCARM__ )
static inline void __jump_to( uint32_t addr )
{
__asm( "MOV R1, #0x00000001" );
__asm( "ORR R0, R0, R1" ); /* Last bit of jump address indicates whether destination is Thumb or ARM code */
__asm( "BLX R0" );
}
#elif defined ( __GNUC__ )
__attribute__( ( always_inline ) ) static __INLINE void __jump_to( uint32_t addr )
{
addr |= 0x00000001; /* Last bit of jump address indicates whether destination is Thumb or ARM code */
__ASM volatile ("BX %0" : : "r" (addr) );
}
#elif defined ( __CC_ARM )
static void __asm __jump_to( uint32_t addr )
{
MOV R1, #0x00000001
ORR R0, R0, R1 /* Last bit of jump address indicates whether destination is Thumb or ARM code */
BLX R0
}
#endif
extern u8* __image4_entry_func__;
extern u8* __image4_validate_code__;
void deinit_platform_bootloader( void )
{
MicoUartFinalize(STDIO_UART);
MicoGpioFinalize(BOOT_SEL);
MicoGpioFinalize(MFG_SEL);
platform_gpio_ip_deinit();
}
void startApplication( uint32_t app_addr )
{
#if defined ( __ICCARM__ )
iar_data_init_fw_loader();
#endif
u32 Image2Len, Image2Addr, ImageIndex, SpicBitMode, SpicImageIndex;
u32 Image2LoadAddr = app_addr;
SPI_FLASH_PIN_FCTRL(ON);
//3 1) Spi flash calibration
#ifdef CONFIG_SPIC_MODULE
// Config spic dual mode
#ifdef CONFIG_MP
SpicBitMode = SpicOneBitMode;
#else
SpicBitMode = SpicDualBitMode;
#endif //CONFIG_MP
SpicFlashInit(SpicBitMode);
#endif //CONFIG_SPIC_MODULE
PRAM_START_FUNCTION Image4EntryFun=(PRAM_START_FUNCTION)__image4_entry_func__;
Image2Len = HAL_READ32(SPI_FLASH_BASE, Image2LoadAddr);
Image2Addr = HAL_READ32(SPI_FLASH_BASE, (Image2LoadAddr+0x4));
DBG_8195A("Flash FW Image2Len 0x%x 0x%x\n", Image2Len, Image2Addr);
DBG_8195A("Flash FW Loader:Addr 0x%x, Len %d, Load to SRAM 0x%x\n", Image2LoadAddr, Image2Len, Image2Addr);
SpicImageIndex = 0;
for (ImageIndex = 0x10 + Image2LoadAddr; ImageIndex < (Image2Len + Image2LoadAddr + 0x10); ImageIndex = ImageIndex + 4) {
HAL_WRITE32(Image2Addr, SpicImageIndex,
HAL_READ32(SPI_FLASH_BASE, ImageIndex));
SpicImageIndex += 4;
}
#ifdef CONFIG_SDR_EN
u32 Image3LoadAddr;
u32 Image3Len;
u32 Image3Addr;
Image3LoadAddr = Image2LoadAddr + Image2Len+0x10;
Image3Len = HAL_READ32(SPI_FLASH_BASE, Image3LoadAddr);
Image3Addr = HAL_READ32(SPI_FLASH_BASE, Image3LoadAddr + 0x4);
if( (Image3Len==0xFFFFFFFF) || (Image3Len==0) || (Image3Addr!=0x30000000)){
DBG_8195A("No Image3\n\r");
}else{
DBG_8195A("Image3 length: 0x%x, Image3 Addr: 0x%x\n",Image3Len, Image3Addr);
SpicImageIndex = 0;
for (ImageIndex = 0x10 + Image3LoadAddr;
ImageIndex < (Image3Len + Image3LoadAddr + 0x10);
ImageIndex = ImageIndex + 4) {
HAL_WRITE32(Image3Addr, SpicImageIndex,
HAL_READ32(SPI_FLASH_BASE, ImageIndex));
SpicImageIndex += 4;
}
}
#endif
//3 3) Jump to image 4
DBG_8195A("InfraStart: %p, Img2 Sign %s \n", __image4_entry_func__, (char*)__image4_validate_code__);
if (_strcmp((char *)__image4_validate_code__, "RTKWin") == 0) {
deinit_platform_bootloader();
Image4EntryFun->RamStartFun();
}
}
/**
* @brief system software reset
*
* @return None
*
*/
static void _sys_reset(void)
{
// Set processor clock to default before system reset
HAL_WRITE32(SYSTEM_CTRL_BASE, 0x14, 0x00000021);
HalDelayUs(100*1000);
HAL_WRITE32(PERI_ON_BASE, REG_SOC_FUNC_EN, HAL_READ32(PERI_ON_BASE, REG_SOC_FUNC_EN) & ~(1 << 27));
// Cortex-M3 SCB->AIRCR
HAL_WRITE32(0xE000ED00, 0x0C, (0x5FA << 16) | // VECTKEY
(HAL_READ32(0xE000ED00, 0x0C) & (7 << 8)) | // PRIGROUP
(1 << 2)); // SYSRESETREQ
}
void platform_mcu_reset( void )
{
_sys_reset();
}
/* STM32F2 common clock initialisation function
* This brings up enough clocks to allow the processor to run quickly while initialising memory.
* Other platform specific clock init can be done in init_platform() or init_architecture()
*/
void init_clocks( void )
{
#if 0
//RCC_DeInit( ); /* if not commented then the LSE PA8 output will be disabled and never comes up again */
/* Configure Clocks */
RCC_HSEConfig( HSE_SOURCE );
RCC_WaitForHSEStartUp( );
RCC_HCLKConfig( AHB_CLOCK_DIVIDER );
RCC_PCLK2Config( APB2_CLOCK_DIVIDER );
RCC_PCLK1Config( APB1_CLOCK_DIVIDER );
/* Enable the PLL */
FLASH_SetLatency( INT_FLASH_WAIT_STATE );
FLASH_PrefetchBufferCmd( ENABLE );
/* Use the clock configuration utility from ST to calculate these values
* http://www.st.com/st-web-ui/static/active/en/st_prod_software_internet/resource/technical/software/utility/stsw-stm32090.zip
*/
RCC_PLLConfig( PLL_SOURCE, PLL_M_CONSTANT, PLL_N_CONSTANT, PLL_P_CONSTANT, PPL_Q_CONSTANT ); /* NOTE: The CPU Clock Frequency is independently defined in <WICED-SDK>/Wiced/Platform/<platform>/<platform>.mk */
RCC_PLLCmd( ENABLE );
while ( RCC_GetFlagStatus( RCC_FLAG_PLLRDY ) == RESET )
{
}
RCC_SYSCLKConfig( SYSTEM_CLOCK_SOURCE );
while ( RCC_GetSYSCLKSource( ) != 0x08 )
{
}
/* Configure HCLK clock as SysTick clock source. */
SysTick_CLKSourceConfig( SYSTICK_CLOCK_SOURCE );
SysTick_Config( SystemCoreClock / 1000 );
#endif
/* Workaround for the GPIOA_7 didn't pull high: it may cause the
SDIO Device hardware be enabled automatically at power on and then
GPIOA[7:0] will be used for SDIO device */
#ifndef CONFIG_SDIO_DEVICE_EN
/* Disable Clock for SDIO function */
ACTCK_SDIOD_CCTRL(OFF);
/* SDIO Function Disable */
SDIOD_ON_FCTRL(OFF);
SDIOD_OFF_FCTRL(OFF);
// SDIO Pin Mux off
SDIOD_PIN_FCTRL(OFF);
#endif
}
WEAK void init_memory( void )
{
}
void init_architecture( void )
{
#ifndef MICO_DISABLE_STDIO
#ifndef NO_MICO_RTOS
mico_rtos_init_mutex( &stdio_tx_mutex );
mico_rtos_unlock_mutex ( &stdio_tx_mutex );
mico_rtos_init_mutex( &stdio_rx_mutex );
mico_rtos_unlock_mutex ( &stdio_rx_mutex );
#endif
#if ( defined MOC100 )
ring_buffer_init ( (ring_buffer_t*)&stdio_rx_buffer, (uint8_t*)stdio_rx_data, STDIO_BUFFER_SIZE );
platform_uart_init( &platform_uart_drivers[STDIO_UART], &platform_uart_peripherals[STDIO_UART], &stdio_uart_config, (ring_buffer_t*)&stdio_rx_buffer );
#endif
#endif
#ifdef BOOTLOADER
return;
#endif
#ifndef MICO_DISABLE_MCU_POWERSAVE
/* Initialise MCU powersave */
platform_mcu_powersave_init( );
#endif /* ifndef MICO_DISABLE_MCU_POWERSAVE */
platform_mcu_powersave_disable( );
}
/******************************************************
* NO-OS Functions
******************************************************/
#ifdef NO_MICO_RTOS
static volatile uint32_t no_os_tick = 0;
void SysTick_Handler(void)
{
//no_os_tick ++;
//platform_watchdog_kick( );
}
uint32_t mico_get_time_no_os(void)
{
int current_tick;
current_tick = HalTimerOp.HalTimerReadCount(1);
no_os_tick = (0xFFFFFFFF - current_tick)*TIMER_TICK_US/1000;
return no_os_tick;
}
#endif