/** ****************************************************************************** * @file platform_init.c * @author William Xu * @version V1.0.0 * @date 05-May-2014 * @brief This file provide functions called by MICO to drive stm32f2xx * platform: - e.g. power save, reboot, platform initialize ****************************************************************************** * UNPUBLISHED PROPRIETARY SOURCE CODE * Copyright (c) 2016 MXCHIP Inc. * * The contents of this file may not be disclosed to third parties, copied or * duplicated in any form, in whole or in part, without the prior written * permission of MXCHIP Corporation. ****************************************************************************** */ #include "platform_peripheral.h" #include "platform.h" #include "platform_config.h" #include "platform_logging.h" #include // For memcmp #include "crt0.h" #include "mico_rtos.h" #include "platform_init.h" /****************************************************** * Macros ******************************************************/ /****************************************************** * Constants ******************************************************/ #ifndef STDIO_BUFFER_SIZE #define STDIO_BUFFER_SIZE 64 #endif /****************************************************** * Enumerations ******************************************************/ /****************************************************** * Type Definitions ******************************************************/ /****************************************************** * Structures ******************************************************/ /****************************************************** * Function Declarations ******************************************************/ extern OSStatus host_platform_init( void ); /****************************************************** * Variables Definitions ******************************************************/ extern platform_uart_t platform_uart_peripherals[]; extern platform_uart_driver_t platform_uart_drivers[]; #ifndef MICO_DISABLE_STDIO static const platform_uart_config_t stdio_uart_config = { .baud_rate = STDIO_UART_BAUDRATE, .data_width = DATA_WIDTH_8BIT, .parity = NO_PARITY, .stop_bits = STOP_BITS_1, .flow_control = FLOW_CONTROL_DISABLED, .flags = 0, }; static volatile ring_buffer_t stdio_rx_buffer; static volatile uint8_t stdio_rx_data[STDIO_BUFFER_SIZE]; mico_mutex_t stdio_rx_mutex; mico_mutex_t stdio_tx_mutex; #endif /* #ifndef MICO_DISABLE_STDIO */ /****************************************************** * Function Definitions ******************************************************/ #if defined ( __ICCARM__ ) static inline void __jump_to( uint32_t addr ) { __asm( "MOV R1, #0x00000001" ); __asm( "ORR R0, R0, R1" ); /* Last bit of jump address indicates whether destination is Thumb or ARM code */ __asm( "BLX R0" ); } #elif defined ( __GNUC__ ) __attribute__( ( always_inline ) ) static __INLINE void __jump_to( uint32_t addr ) { addr |= 0x00000001; /* Last bit of jump address indicates whether destination is Thumb or ARM code */ __ASM volatile ("BX %0" : : "r" (addr) ); } #elif defined ( __CC_ARM ) static void __asm __jump_to( uint32_t addr ) { MOV R1, #0x00000001 ORR R0, R0, R1 /* Last bit of jump address indicates whether destination is Thumb or ARM code */ BLX R0 } #endif void startApplication( uint32_t app_addr ) { uint32_t* stack_ptr; uint32_t* start_ptr; if (((*(volatile uint32_t*)app_addr) & 0x2FFE0000 ) != 0x20000000) app_addr += 0x200; /* Test if user code is programmed starting from address "ApplicationAddress" */ if (((*(volatile uint32_t*)app_addr) & 0x2FFE0000 ) == 0x20000000) { SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; /* Clear all interrupt enabled by bootloader */ for (int i = 0; i < 8; i++ ) NVIC->ICER[i] = 0xFFFFFFFF; stack_ptr = (uint32_t*) app_addr; /* Initial stack pointer is first 4 bytes of vector table */ start_ptr = ( stack_ptr + 1 ); /* Reset vector is second 4 bytes of vector table */ #if defined ( __ICCARM__) __ASM( "MOV LR, #0xFFFFFFFF" ); __ASM( "MOV R1, #0x01000000" ); __ASM( "MSR APSR_nzcvq, R1" ); __ASM( "MOV R1, #0x00000000" ); __ASM( "MSR PRIMASK, R1" ); __ASM( "MSR FAULTMASK, R1" ); __ASM( "MSR BASEPRI, R1" ); __ASM( "MSR CONTROL, R1" ); #endif __set_MSP( *stack_ptr ); __jump_to( *start_ptr ); } } void platform_mcu_reset( void ) { NVIC_SystemReset(); } /* STM32F2 common clock initialisation function * This brings up enough clocks to allow the processor to run quickly while initialising memory. * Other platform specific clock init can be done in init_platform() or init_architecture() */ void init_clocks( void ) { sysclk_init(); /* Switch Slow Clock source to external 32K crystal */ pmc_switch_sclk_to_32kxtal( 0 ); while( pmc_osc_is_ready_32kxtal( ) == 0 ) { } pmc_disable_udpck( ); pmc_disable_all_periph_clk( ); #ifdef NO_MICO_RTOS SysTick_Config( SystemCoreClock / 1000 ); #endif } WEAK void init_memory( void ) { } void init_architecture( void ) { uint8_t i; /* Initialise the interrupt priorities to a priority lower than 0 so that the BASEPRI register can mask them */ for ( i = 0; i < 81; i++ ) { NVIC ->IP[i] = 0xff; } NVIC_SetPriorityGrouping( 7 - __NVIC_PRIO_BITS ); /* Initialise the interrupt priorities to a priority lower than 0 so that the BASEPRI register can mask them */ NVIC_SetPriority(SVCall_IRQn, 0); NVIC_SetPriority(DebugMonitor_IRQn, 0); NVIC_SetPriority(PendSV_IRQn, ((1 << __NVIC_PRIO_BITS) - 1)); NVIC_SetPriority(SysTick_IRQn, ((1 << __NVIC_PRIO_BITS) - 1)); /* * enable 3 exception interrupt */ SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk; SCB->SHCSR |= SCB_SHCSR_BUSFAULTENA_Msk; SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk; platform_init_peripheral_irq_priorities(); ioport_init(); wdt_disable( WDT ); /* Initialise GPIO IRQ manager */ platform_gpio_irq_manager_init(); #ifndef MICO_DISABLE_MCU_POWERSAVE /* Initialise MCU powersave */ platform_mcu_powersave_init( ); #endif /* ifndef MICO_DISABLE_MCU_POWERSAVE */ #ifndef MICO_DISABLE_STDIO #ifndef NO_MICO_RTOS mico_rtos_init_mutex( &stdio_tx_mutex ); mico_rtos_unlock_mutex ( &stdio_tx_mutex ); mico_rtos_init_mutex( &stdio_rx_mutex ); mico_rtos_unlock_mutex ( &stdio_rx_mutex ); #endif ring_buffer_init ( (ring_buffer_t*)&stdio_rx_buffer, (uint8_t*)stdio_rx_data, STDIO_BUFFER_SIZE ); platform_uart_init( &platform_uart_drivers[STDIO_UART], &platform_uart_peripherals[STDIO_UART], &stdio_uart_config, (ring_buffer_t*)&stdio_rx_buffer ); #endif /* Ensure 802.11 device is in reset. */ host_platform_init( ); /* Initialise nanosecond clock counter */ platform_init_nanosecond_clock(); #ifdef BOOTLOADER return; #endif platform_mcu_powersave_disable( ); } OSStatus stdio_hardfault( char* data, uint32_t size ) { #ifndef MICO_DISABLE_STDIO uint32_t idx; Usart *p_usart = platform_uart_peripherals[STDIO_UART].port; for ( idx = 0; idx < size; idx++ ) { while ( usart_is_tx_ready( p_usart ) == 0 ); usart_write( p_usart, (data[idx] & (uint16_t)0x01FF) ); } #endif return kNoErr; } /****************************************************** * NO-OS Functions ******************************************************/ #ifdef NO_MICO_RTOS static volatile uint32_t no_os_tick = 0; void SysTick_Handler(void) { no_os_tick ++; platform_watchdog_kick( ); } uint32_t mico_get_time_no_os(void) { return no_os_tick; } #endif