/** ****************************************************************************** * @file SHAUtils.c * @author William Xu * @version V1.0.0 * @date 05-May-2014 * @brief SHA Utilities, Port of libtom's SHA-1, SHA-256, and SHA-512 code. * Port of floodyberry's SHA-3 code. ****************************************************************************** * * The MIT License * Copyright (c) 2014 MXCHIP Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************** */ #include "SHAUtils.h" #include "common.h" #include "Debug.h" #include "StringUtils.h" //=========================================================================================================================== // SHA-1 internals //=========================================================================================================================== #define SHA1_BLOCK_SIZE 64 static void _SHA1_Compress( SHA_CTX_compat *ctx, const uint8_t *inPtr ); //=========================================================================================================================== // SHA1_Init_compat //=========================================================================================================================== int SHA1_Init_compat( SHA_CTX_compat *ctx ) { ctx->length = 0; ctx->state[ 0 ] = UINT32_C( 0x67452301 ); ctx->state[ 1 ] = UINT32_C( 0xefcdab89 ); ctx->state[ 2 ] = UINT32_C( 0x98badcfe ); ctx->state[ 3 ] = UINT32_C( 0x10325476 ); ctx->state[ 4 ] = UINT32_C( 0xc3d2e1f0 ); ctx->curlen = 0; return( 0 ); } //=========================================================================================================================== // SHA1_Update_compat //=========================================================================================================================== int SHA1_Update_compat( SHA_CTX_compat *ctx, const void *inData, size_t inLen ) { const uint8_t * src = (const uint8_t *) inData; size_t n; while( inLen > 0 ) { if( ( ctx->curlen == 0 ) && ( inLen >= SHA1_BLOCK_SIZE ) ) { _SHA1_Compress( ctx, src ); ctx->length += ( SHA1_BLOCK_SIZE * 8 ); src += SHA1_BLOCK_SIZE; inLen -= SHA1_BLOCK_SIZE; } else { n = Min( inLen, SHA1_BLOCK_SIZE - ctx->curlen ); memcpy( ctx->buf + ctx->curlen, src, n ); ctx->curlen += n; src += n; inLen -= n; if( ctx->curlen == SHA1_BLOCK_SIZE ) { _SHA1_Compress( ctx, ctx->buf ); ctx->length += ( SHA1_BLOCK_SIZE * 8 ); ctx->curlen = 0; } } } return( 0 ); } //=========================================================================================================================== // SHA1_Final_compat //=========================================================================================================================== int SHA1_Final_compat( unsigned char *outDigest, SHA_CTX_compat *ctx ) { int i; ctx->length += ctx->curlen * 8; ctx->buf[ ctx->curlen++ ] = 0x80; // If length > 56 bytes, append zeros then compress. Then fall back to padding zeros and length encoding like normal. if( ctx->curlen > 56 ) { while( ctx->curlen < 64 ) ctx->buf[ ctx->curlen++ ] = 0; _SHA1_Compress( ctx, ctx->buf ); ctx->curlen = 0; } // Pad up to 56 bytes of zeros. while( ctx->curlen < 56 ) ctx->buf[ ctx->curlen++ ] = 0; // Store length. WriteBig64( ctx->buf + 56, ctx->length ); _SHA1_Compress( ctx, ctx->buf ); // Copy output. for( i = 0; i < 5; ++i ) { WriteBig32( outDigest + ( 4 * i ), ctx->state[ i ] ); } memset( ctx, 0, sizeof( *ctx ) ); // Zero sensitive info. return( 0 ); } //=========================================================================================================================== // SHA1_compat //=========================================================================================================================== unsigned char * SHA1_compat( const void *inData, size_t inLen, unsigned char *outDigest ) { SHA_CTX_compat ctx; SHA1_Init_compat( &ctx ); SHA1_Update_compat( &ctx, inData, inLen ); SHA1_Final_compat( outDigest, &ctx ); return( outDigest ); } //=========================================================================================================================== // _SHA1_Compress //=========================================================================================================================== #define SHA1_F0( x, y, z ) (z ^ ( x & ( y ^ z ) ) ) #define SHA1_F1( x, y, z ) (x ^ y ^ z ) #define SHA1_F2( x, y, z ) ( ( x & y ) | ( z & ( x | y ) ) ) #define SHA1_F3( x, y, z ) (x ^ y ^ z ) #define SHA1_FF0( a, b, c, d, e, i ) e = ( ROTL32( a, 5 ) + SHA1_F0( b, c, d ) + e + W[ i ] + UINT32_C( 0x5a827999 ) ); b = ROTL32( b, 30); #define SHA1_FF1( a, b, c, d, e, i ) e = ( ROTL32( a, 5 ) + SHA1_F1( b, c, d ) + e + W[ i ] + UINT32_C( 0x6ed9eba1 ) ); b = ROTL32( b, 30); #define SHA1_FF2( a, b, c, d, e, i ) e = ( ROTL32( a, 5 ) + SHA1_F2( b, c, d ) + e + W[ i ] + UINT32_C( 0x8f1bbcdc ) ); b = ROTL32( b, 30); #define SHA1_FF3( a, b, c, d, e, i ) e = ( ROTL32( a, 5 ) + SHA1_F3( b, c, d ) + e + W[ i ] + UINT32_C( 0xca62c1d6 ) ); b = ROTL32( b, 30); static void _SHA1_Compress( SHA_CTX_compat *ctx, const uint8_t *inPtr ) { uint32_t a, b, c, d, e, W[ 80 ], i, tmp; // Copy the state into 512-bits into W[0..15]. for( i = 0; i < 16; ++i ) { W[ i ] = ReadBig32( inPtr ); inPtr += 4; } // Copy state a = ctx->state[ 0 ]; b = ctx->state[ 1 ]; c = ctx->state[ 2 ]; d = ctx->state[ 3 ]; e = ctx->state[ 4 ]; // Expand it for( i = 16; i < 80; ++i ) { tmp = W[ i-3 ] ^ W[ i-8 ] ^ W[ i-14 ] ^ W[ i-16 ]; W[ i ] = ROTL32( tmp, 1 ); } // Compress // Round 1 for( i = 0; i < 20; ) { SHA1_FF0( a, b, c, d, e, i++ ); SHA1_FF0( e, a, b, c, d, i++ ); SHA1_FF0( d, e, a, b, c, i++ ); SHA1_FF0( c, d, e, a, b, i++ ); SHA1_FF0( b, c, d, e, a, i++ ); } // Round 2 for( ; i < 40; ) { SHA1_FF1( a, b, c, d, e, i++ ); SHA1_FF1( e, a, b, c, d, i++ ); SHA1_FF1( d, e, a, b, c, i++ ); SHA1_FF1( c, d, e, a, b, i++ ); SHA1_FF1( b, c, d, e, a, i++ ); } // Round 3 for( ; i < 60; ) { SHA1_FF2( a, b, c, d, e, i++ ); SHA1_FF2( e, a, b, c, d, i++ ); SHA1_FF2( d, e, a, b, c, i++ ); SHA1_FF2( c, d, e, a, b, i++ ); SHA1_FF2( b, c, d, e, a, i++ ); } // Round 4 for( ; i < 80; ) { SHA1_FF3( a, b, c, d, e, i++ ); SHA1_FF3( e, a, b, c, d, i++ ); SHA1_FF3( d, e, a, b, c, i++ ); SHA1_FF3( c, d, e, a, b, i++ ); SHA1_FF3( b, c, d, e, a, i++ ); } // Store ctx->state[ 0 ] = ctx->state[ 0 ] + a; ctx->state[ 1 ] = ctx->state[ 1 ] + b; ctx->state[ 2 ] = ctx->state[ 2 ] + c; ctx->state[ 3 ] = ctx->state[ 3 ] + d; ctx->state[ 4 ] = ctx->state[ 4 ] + e; } //=========================================================================================================================== // SHA-512 internals //=========================================================================================================================== #define SHA512_BLOCK_SIZE 128 static const uint64_t K[ 80 ] = { UINT64_C( 0x428a2f98d728ae22 ), UINT64_C( 0x7137449123ef65cd ), UINT64_C( 0xb5c0fbcfec4d3b2f ), UINT64_C( 0xe9b5dba58189dbbc ), UINT64_C( 0x3956c25bf348b538 ), UINT64_C( 0x59f111f1b605d019 ), UINT64_C( 0x923f82a4af194f9b ), UINT64_C( 0xab1c5ed5da6d8118 ), UINT64_C( 0xd807aa98a3030242 ), UINT64_C( 0x12835b0145706fbe ), UINT64_C( 0x243185be4ee4b28c ), UINT64_C( 0x550c7dc3d5ffb4e2 ), UINT64_C( 0x72be5d74f27b896f ), UINT64_C( 0x80deb1fe3b1696b1 ), UINT64_C( 0x9bdc06a725c71235 ), UINT64_C( 0xc19bf174cf692694 ), UINT64_C( 0xe49b69c19ef14ad2 ), UINT64_C( 0xefbe4786384f25e3 ), UINT64_C( 0x0fc19dc68b8cd5b5 ), UINT64_C( 0x240ca1cc77ac9c65 ), UINT64_C( 0x2de92c6f592b0275 ), UINT64_C( 0x4a7484aa6ea6e483 ), UINT64_C( 0x5cb0a9dcbd41fbd4 ), UINT64_C( 0x76f988da831153b5 ), UINT64_C( 0x983e5152ee66dfab ), UINT64_C( 0xa831c66d2db43210 ), UINT64_C( 0xb00327c898fb213f ), UINT64_C( 0xbf597fc7beef0ee4 ), UINT64_C( 0xc6e00bf33da88fc2 ), UINT64_C( 0xd5a79147930aa725 ), UINT64_C( 0x06ca6351e003826f ), UINT64_C( 0x142929670a0e6e70 ), UINT64_C( 0x27b70a8546d22ffc ), UINT64_C( 0x2e1b21385c26c926 ), UINT64_C( 0x4d2c6dfc5ac42aed ), UINT64_C( 0x53380d139d95b3df ), UINT64_C( 0x650a73548baf63de ), UINT64_C( 0x766a0abb3c77b2a8 ), UINT64_C( 0x81c2c92e47edaee6 ), UINT64_C( 0x92722c851482353b ), UINT64_C( 0xa2bfe8a14cf10364 ), UINT64_C( 0xa81a664bbc423001 ), UINT64_C( 0xc24b8b70d0f89791 ), UINT64_C( 0xc76c51a30654be30 ), UINT64_C( 0xd192e819d6ef5218 ), UINT64_C( 0xd69906245565a910 ), UINT64_C( 0xf40e35855771202a ), UINT64_C( 0x106aa07032bbd1b8 ), UINT64_C( 0x19a4c116b8d2d0c8 ), UINT64_C( 0x1e376c085141ab53 ), UINT64_C( 0x2748774cdf8eeb99 ), UINT64_C( 0x34b0bcb5e19b48a8 ), UINT64_C( 0x391c0cb3c5c95a63 ), UINT64_C( 0x4ed8aa4ae3418acb ), UINT64_C( 0x5b9cca4f7763e373 ), UINT64_C( 0x682e6ff3d6b2b8a3 ), UINT64_C( 0x748f82ee5defb2fc ), UINT64_C( 0x78a5636f43172f60 ), UINT64_C( 0x84c87814a1f0ab72 ), UINT64_C( 0x8cc702081a6439ec ), UINT64_C( 0x90befffa23631e28 ), UINT64_C( 0xa4506cebde82bde9 ), UINT64_C( 0xbef9a3f7b2c67915 ), UINT64_C( 0xc67178f2e372532b ), UINT64_C( 0xca273eceea26619c ), UINT64_C( 0xd186b8c721c0c207 ), UINT64_C( 0xeada7dd6cde0eb1e ), UINT64_C( 0xf57d4f7fee6ed178 ), UINT64_C( 0x06f067aa72176fba ), UINT64_C( 0x0a637dc5a2c898a6 ), UINT64_C( 0x113f9804bef90dae ), UINT64_C( 0x1b710b35131c471b ), UINT64_C( 0x28db77f523047d84 ), UINT64_C( 0x32caab7b40c72493 ), UINT64_C( 0x3c9ebe0a15c9bebc ), UINT64_C( 0x431d67c49c100d4c ), UINT64_C( 0x4cc5d4becb3e42b6 ), UINT64_C( 0x597f299cfc657e2a ), UINT64_C( 0x5fcb6fab3ad6faec ), UINT64_C( 0x6c44198c4a475817 ) }; static void _SHA512_Compress( SHA512_CTX_compat *ctx, const uint8_t *inPtr ); //=========================================================================================================================== // SHA512_Init_compat //=========================================================================================================================== int SHA512_Init_compat( SHA512_CTX_compat *ctx ) { ctx->length = 0; ctx->state[ 0 ] = UINT64_C( 0x6a09e667f3bcc908 ); ctx->state[ 1 ] = UINT64_C( 0xbb67ae8584caa73b ); ctx->state[ 2 ] = UINT64_C( 0x3c6ef372fe94f82b ); ctx->state[ 3 ] = UINT64_C( 0xa54ff53a5f1d36f1 ); ctx->state[ 4 ] = UINT64_C( 0x510e527fade682d1 ); ctx->state[ 5 ] = UINT64_C( 0x9b05688c2b3e6c1f ); ctx->state[ 6 ] = UINT64_C( 0x1f83d9abfb41bd6b ); ctx->state[ 7 ] = UINT64_C( 0x5be0cd19137e2179 ); ctx->curlen = 0; return( 0 ); } //=========================================================================================================================== // SHA512_Update_compat //=========================================================================================================================== int SHA512_Update_compat( SHA512_CTX_compat *ctx, const void *inData, size_t inLen ) { const uint8_t * src = (const uint8_t *) inData; size_t n; while( inLen > 0 ) { if( ( ctx->curlen == 0 ) && ( inLen >= SHA512_BLOCK_SIZE ) ) { _SHA512_Compress( ctx, src ); ctx->length += ( SHA512_BLOCK_SIZE * 8 ); src += SHA512_BLOCK_SIZE; inLen -= SHA512_BLOCK_SIZE; } else { n = Min( inLen, SHA512_BLOCK_SIZE - ctx->curlen ); memcpy( ctx->buf + ctx->curlen, src, n ); ctx->curlen += n; src += n; inLen -= n; if( ctx->curlen == SHA512_BLOCK_SIZE ) { _SHA512_Compress( ctx, ctx->buf ); ctx->length += ( SHA512_BLOCK_SIZE * 8 ); ctx->curlen = 0; } } } return( 0 ); } //=========================================================================================================================== // SHA512_Final_compat //=========================================================================================================================== int SHA512_Final_compat( unsigned char *outDigest, SHA512_CTX_compat *ctx ) { int i; ctx->length += ( ctx->curlen * UINT64_C( 8 ) ); ctx->buf[ ctx->curlen++ ] = 0x80; // If length > 112 bytes, append zeros then compress. Then fall back to padding zeros and length encoding like normal. if( ctx->curlen > 112 ) { while( ctx->curlen < 128 ) ctx->buf[ ctx->curlen++ ] = 0; _SHA512_Compress( ctx, ctx->buf ); ctx->curlen = 0; } // Pad up to 120 bytes of zeroes. // Note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash 2^64 bits of data. while( ctx->curlen < 120 ) ctx->buf[ ctx->curlen++ ] = 0; // Store length WriteBig64( ctx->buf + 120, ctx->length ); _SHA512_Compress( ctx, ctx->buf ); // Copy output for( i = 0; i < 8; ++i ) { WriteBig64( outDigest + ( 8 * i ), ctx->state[ i ] ); } memset( ctx, 0, sizeof( *ctx ) ); // Zero sensitive info. return( 0 ); } //=========================================================================================================================== // SHA512_compat //=========================================================================================================================== unsigned char * SHA512_compat( const void *inData, size_t inLen, unsigned char *outDigest ) { SHA512_CTX_compat ctx; SHA512_Init_compat( &ctx ); SHA512_Update_compat( &ctx, inData, inLen ); SHA512_Final_compat( outDigest, &ctx ); return( outDigest ); } //=========================================================================================================================== // _SHA512_Compress //=========================================================================================================================== #define SHA512_Ch(x,y,z) (z ^ (x & (y ^ z))) #define SHA512_Maj(x,y,z) (((x | y) & z) | (x & y)) #define SHA512_S(x, n) ROTR64(x, n) #define SHA512_R(x, n) (((x) & UINT64_C(0xFFFFFFFFFFFFFFFF)) >> ((uint64_t) n)) #define SHA512_Sigma0(x) (SHA512_S(x, 28) ^ SHA512_S(x, 34) ^ SHA512_S(x, 39)) #define SHA512_Sigma1(x) (SHA512_S(x, 14) ^ SHA512_S(x, 18) ^ SHA512_S(x, 41)) #define SHA512_Gamma0(x) (SHA512_S(x, 1) ^ SHA512_S(x, 8) ^ SHA512_R(x, 7)) #define SHA512_Gamma1(x) (SHA512_S(x, 19) ^ SHA512_S(x, 61) ^ SHA512_R(x, 6)) #define SHA512_RND( a, b, c, d, e, f, g, h, i ) \ t0 = h + SHA512_Sigma1( e ) + SHA512_Ch( e, f, g ) + K[ i ] + W[ i ]; \ t1 = SHA512_Sigma0( a ) + SHA512_Maj( a, b, c); \ d += t0; \ h = t0 + t1; static void _SHA512_Compress( SHA512_CTX_compat *ctx, const uint8_t *inPtr ) { uint64_t S[ 8] , W[ 80 ], t0, t1; int i; // Copy state into S for( i = 0; i < 8; ++i ) { S[ i ] = ctx->state[ i ]; } // Copy the state into 1024-bits into W[0..15] for( i = 0; i < 16; ++i ) { W[ i ] = ReadBig64( inPtr ); inPtr += 8; } // Fill W[16..79] for( i = 16; i < 80; ++i ) { W[ i ] = SHA512_Gamma1( W[ i-2 ] ) + W[ i-7 ] + SHA512_Gamma0( W[ i-15 ] ) + W[ i-16 ]; } // Compress for( i = 0; i < 80; i += 8 ) { SHA512_RND( S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ], S[ 4 ], S[ 5 ], S[ 6 ], S[ 7 ], i+0 ); SHA512_RND( S[ 7 ], S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ], S[ 4 ], S[ 5 ], S[ 6 ], i+1 ); SHA512_RND( S[ 6 ], S[ 7 ], S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ], S[ 4 ], S[ 5 ], i+2 ); SHA512_RND( S[ 5 ], S[ 6 ], S[ 7 ], S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ], S[ 4 ], i+3 ); SHA512_RND( S[ 4 ], S[ 5 ], S[ 6 ], S[ 7 ], S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ], i+4 ); SHA512_RND( S[ 3 ], S[ 4 ], S[ 5 ], S[ 6 ], S[ 7 ], S[ 0 ], S[ 1 ], S[ 2 ], i+5 ); SHA512_RND( S[ 2 ], S[ 3 ], S[ 4 ], S[ 5 ], S[ 6 ], S[ 7 ], S[ 0 ], S[ 1 ], i+6 ); SHA512_RND( S[ 1 ], S[ 2 ], S[ 3 ], S[ 4 ], S[ 5 ], S[ 6 ], S[ 7 ], S[ 0 ], i+7 ); } // Feedback for( i = 0; i < 8; ++i ) { ctx->state[ i ] += S[ i ]; } } //=========================================================================================================================== // SHA-3 internals // // Based on code from . //=========================================================================================================================== static const uint64_t kSHA3RoundConstants[24] = { UINT64_C( 0x0000000000000001 ), UINT64_C( 0x0000000000008082 ), UINT64_C( 0x800000000000808a ), UINT64_C( 0x8000000080008000 ), UINT64_C( 0x000000000000808b ), UINT64_C( 0x0000000080000001 ), UINT64_C( 0x8000000080008081 ), UINT64_C( 0x8000000000008009 ), UINT64_C( 0x000000000000008a ), UINT64_C( 0x0000000000000088 ), UINT64_C( 0x0000000080008009 ), UINT64_C( 0x000000008000000a ), UINT64_C( 0x000000008000808b ), UINT64_C( 0x800000000000008b ), UINT64_C( 0x8000000000008089 ), UINT64_C( 0x8000000000008003 ), UINT64_C( 0x8000000000008002 ), UINT64_C( 0x8000000000000080 ), UINT64_C( 0x000000000000800a ), UINT64_C( 0x800000008000000a ), UINT64_C( 0x8000000080008081 ), UINT64_C( 0x8000000000008080 ), UINT64_C( 0x0000000080000001 ), UINT64_C( 0x8000000080008008 ) }; static void _SHA3_Block( SHA3_CTX_compat *ctx, const uint8_t *in ); //=========================================================================================================================== // SHA3_Init_compat //=========================================================================================================================== int SHA3_Init_compat( SHA3_CTX_compat *ctx ) { memset( ctx, 0, sizeof( *ctx ) ); return( 0 ); } //=========================================================================================================================== // SHA3_Update_compat //=========================================================================================================================== int SHA3_Update_compat( SHA3_CTX_compat *ctx, const void *inData, size_t inLen ) { const uint8_t * in = (const uint8_t *) inData; size_t want; // Handle the previous data. if( ctx->leftover > 0 ) { want = SHA3_BLOCK_SIZE - ctx->leftover; want = ( want < inLen ) ? want : inLen; memcpy( ctx->buffer + ctx->leftover, in, want ); ctx->leftover += want; if( ctx->leftover < SHA3_BLOCK_SIZE ) goto exit; in += want; inLen -= want; _SHA3_Block( ctx, ctx->buffer ); } // Handle the current data. while( inLen >= SHA3_BLOCK_SIZE ) { _SHA3_Block( ctx, in ); in += SHA3_BLOCK_SIZE; inLen -= SHA3_BLOCK_SIZE; } // Handle leftover data. ctx->leftover = inLen; if( inLen > 0 ) memcpy( ctx->buffer, in, inLen ); exit: return( 0 ); } //=========================================================================================================================== // SHA3_Update_compat //=========================================================================================================================== int SHA3_Final_compat( uint8_t *outDigest, SHA3_CTX_compat *ctx ) { size_t i; ctx->buffer[ctx->leftover] = 0x01; memset( ctx->buffer + ( ctx->leftover + 1 ), 0, SHA3_BLOCK_SIZE - ( ctx->leftover + 1 ) ); ctx->buffer[SHA3_BLOCK_SIZE - 1] |= 0x80; _SHA3_Block( ctx, ctx->buffer ); for( i = 0; i < SHA3_DIGEST_LENGTH; i += 8 ) { WriteLittle64( &outDigest[i], ctx->state[i / 8] ); } return( 0 ); } //=========================================================================================================================== // SHA3_Update_compat //=========================================================================================================================== uint8_t * SHA3_compat( const void *inData, size_t inLen, uint8_t outDigest[64] ) { SHA3_CTX_compat ctx; SHA3_Init_compat( &ctx ); SHA3_Update_compat( &ctx, inData, inLen ); SHA3_Final_compat( outDigest, &ctx ); return( outDigest ); } //=========================================================================================================================== // _SHA3_Block //=========================================================================================================================== static void _SHA3_Block( SHA3_CTX_compat *ctx, const uint8_t *in ) { uint64_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; uint64_t s11, s12, s13, s14, s15, s16, s17, s18, s19, s20; uint64_t s21, s22, s23, s24; uint64_t t0, t1, t2, t3, t4, u0, u1, u2, u3, u4, v, w; size_t i; s0 = ctx->state[ 0] ^ ReadLittle64( &in[0] ); s1 = ctx->state[ 1] ^ ReadLittle64( &in[8] ); s2 = ctx->state[ 2] ^ ReadLittle64( &in[16] ); s3 = ctx->state[ 3] ^ ReadLittle64( &in[24] ); s4 = ctx->state[ 4] ^ ReadLittle64( &in[32] ); s5 = ctx->state[ 5] ^ ReadLittle64( &in[40] ); s6 = ctx->state[ 6] ^ ReadLittle64( &in[48] ); s7 = ctx->state[ 7] ^ ReadLittle64( &in[56] ); s8 = ctx->state[ 8] ^ ReadLittle64( &in[64] ); s9 = ctx->state[ 9]; s10 = ctx->state[10]; s11 = ctx->state[11]; s12 = ctx->state[12]; s13 = ctx->state[13]; s14 = ctx->state[14]; s15 = ctx->state[15]; s16 = ctx->state[16]; s17 = ctx->state[17]; s18 = ctx->state[18]; s19 = ctx->state[19]; s20 = ctx->state[20]; s21 = ctx->state[21]; s22 = ctx->state[22]; s23 = ctx->state[23]; s24 = ctx->state[24]; for( i = 0; i < 24; ++i ) { // theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] t0 = s0 ^ s5 ^ s10 ^ s15 ^ s20; t1 = s1 ^ s6 ^ s11 ^ s16 ^ s21; t2 = s2 ^ s7 ^ s12 ^ s17 ^ s22; t3 = s3 ^ s8 ^ s13 ^ s18 ^ s23; t4 = s4 ^ s9 ^ s14 ^ s19 ^ s24; // theta: d[i] = c[i+4] ^ rotl(c[i+1],1) u0 = t4 ^ ROTL64(t1, 1); u1 = t0 ^ ROTL64(t2, 1); u2 = t1 ^ ROTL64(t3, 1); u3 = t2 ^ ROTL64(t4, 1); u4 = t3 ^ ROTL64(t0, 1); // theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] s0 ^= u0; s5 ^= u0; s10 ^= u0; s15 ^= u0; s20 ^= u0; s1 ^= u1; s6 ^= u1; s11 ^= u1; s16 ^= u1; s21 ^= u1; s2 ^= u2; s7 ^= u2; s12 ^= u2; s17 ^= u2; s22 ^= u2; s3 ^= u3; s8 ^= u3; s13 ^= u3; s18 ^= u3; s23 ^= u3; s4 ^= u4; s9 ^= u4; s14 ^= u4; s19 ^= u4; s24 ^= u4; // rho pi: b[..] = rotl(a[..], ..) v = s1; s1 = ROTL64(s6, 44); s6 = ROTL64(s9, 20); s9 = ROTL64(s22, 61); s22 = ROTL64(s14, 39); s14 = ROTL64(s20, 18); s20 = ROTL64(s2, 62); s2 = ROTL64(s12, 43); s12 = ROTL64(s13, 25); s13 = ROTL64(s19, 8); s19 = ROTL64(s23, 56); s23 = ROTL64(s15, 41); s15 = ROTL64(s4, 27); s4 = ROTL64(s24, 14); s24 = ROTL64(s21, 2); s21 = ROTL64(s8, 55); s8 = ROTL64(s16, 45); s16 = ROTL64(s5, 36); s5 = ROTL64(s3, 28); s3 = ROTL64(s18, 21); s18 = ROTL64(s17, 15); s17 = ROTL64(s11, 10); s11 = ROTL64(s7, 6); s7 = ROTL64(s10, 3); s10 = ROTL64(v, 1); // chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] v = s0; w = s1; s0 ^= (~w) & s2; s1 ^= (~s2) & s3; s2 ^= (~s3) & s4; s3 ^= (~s4) & v; s4 ^= (~v) & w; v = s5; w = s6; s5 ^= (~w) & s7; s6 ^= (~s7) & s8; s7 ^= (~s8) & s9; s8 ^= (~s9) & v; s9 ^= (~v) & w; v = s10; w = s11; s10 ^= (~w) & s12; s11 ^= (~s12) & s13; s12 ^= (~s13) & s14; s13 ^= (~s14) & v; s14 ^= (~v) & w; v = s15; w = s16; s15 ^= (~w) & s17; s16 ^= (~s17) & s18; s17 ^= (~s18) & s19; s18 ^= (~s19) & v; s19 ^= (~v) & w; v = s20; w = s21; s20 ^= (~w) & s22; s21 ^= (~s22) & s23; s22 ^= (~s23) & s24; s23 ^= (~s24) & v; s24 ^= (~v) & w; // iota: a[0,0] ^= round constant s0 ^= kSHA3RoundConstants[i]; } ctx->state[ 0] = s0; ctx->state[ 1] = s1; ctx->state[ 2] = s2; ctx->state[ 3] = s3; ctx->state[ 4] = s4; ctx->state[ 5] = s5; ctx->state[ 6] = s6; ctx->state[ 7] = s7; ctx->state[ 8] = s8; ctx->state[ 9] = s9; ctx->state[10] = s10; ctx->state[11] = s11; ctx->state[12] = s12; ctx->state[13] = s13; ctx->state[14] = s14; ctx->state[15] = s15; ctx->state[16] = s16; ctx->state[17] = s17; ctx->state[18] = s18; ctx->state[19] = s19; ctx->state[20] = s20; ctx->state[21] = s21; ctx->state[22] = s22; ctx->state[23] = s23; ctx->state[24] = s24; }