mirror of
https://github.com/luguoyixiazi/test_nine.git
synced 2025-12-05 14:42:49 +08:00
119 lines
3.9 KiB
Python
119 lines
3.9 KiB
Python
import torchvision.transforms as transforms
|
||
from matplotlib import pyplot as plt
|
||
from torchvision.datasets import ImageFolder
|
||
from tqdm import tqdm
|
||
import torch
|
||
import torchvision
|
||
import torch.nn as nn
|
||
from torch.utils.data import DataLoader
|
||
import numpy as np
|
||
import os
|
||
os.makedirs(os.path.join(os.getcwd(),'model'),exist_ok=True)
|
||
|
||
# 定义数据转换
|
||
data_transform = transforms.Compose(
|
||
[
|
||
transforms.Resize((224, 224)), # 调整图像大小
|
||
transforms.ToTensor(), # 将图像转换为张量
|
||
transforms.Normalize(
|
||
(0.485, 0.456, 0.406), (0.229, 0.224, 0.225)
|
||
), # 标准化图像
|
||
]
|
||
)
|
||
|
||
|
||
# 定义数据集
|
||
class CustomDataset:
|
||
def __init__(self, data_dir):
|
||
self.dataset = ImageFolder(root=data_dir, transform=data_transform)
|
||
|
||
def __len__(self):
|
||
return len(self.dataset)
|
||
|
||
def __getitem__(self, idx):
|
||
image, label = self.dataset[idx]
|
||
return image, label
|
||
|
||
|
||
class MyResNet18(torch.nn.Module):
|
||
def __init__(self, num_classes):
|
||
super(MyResNet18, self).__init__()
|
||
self.resnet = torchvision.models.resnet18(pretrained=True)
|
||
self.resnet.fc = nn.Linear(512, num_classes) # 修改这里的输入大小为512
|
||
|
||
def forward(self, x):
|
||
return self.resnet(x)
|
||
|
||
|
||
def train(epoch):
|
||
print("judge the cuda: " + str(torch.version.cuda))
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
print("this train use devices: " + str(device))
|
||
|
||
data_dir = "dataset"
|
||
# 自定义数据集实例
|
||
custom_dataset = CustomDataset(data_dir)
|
||
# 数据加载器
|
||
batch_size = 64
|
||
data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=True)
|
||
|
||
# 初始化模型 num_classes就是目录下的子文件夹数目,每个子文件夹对应一个分类,模型输出的向量长度也是这个长度
|
||
model = MyResNet18(num_classes=91)
|
||
model.to(device)
|
||
|
||
# 损失函数
|
||
criterion = torch.nn.CrossEntropyLoss()
|
||
# 优化器
|
||
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
|
||
|
||
epoch_losses = []
|
||
# 训练模型
|
||
for i in range(epoch):
|
||
losses = []
|
||
|
||
# 迭代器进度条
|
||
data_loader_tqdm = tqdm(data_loader)
|
||
|
||
epoch_loss = 0
|
||
for inputs, labels in data_loader_tqdm:
|
||
# 将输入数据和标签传输到指定的计算设备(如 GPU 或 CPU)
|
||
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
||
# 梯度更新之前将所有模型参数的梯度置为零,防止梯度累积
|
||
optimizer.zero_grad()
|
||
|
||
# 前向传播:将输入数据传入模型,计算输出
|
||
outputs = model(inputs)
|
||
|
||
# 根据模型的输出和实际标签计算损失值
|
||
loss = criterion(outputs, labels)
|
||
|
||
# 将当前批次的损失值记录到 losses 列表中,以便后续计算平均损失
|
||
losses.append(loss.item())
|
||
epoch_loss = np.mean(losses)
|
||
data_loader_tqdm.set_description(
|
||
f"This epoch is {str(i + 1)} and it's loss is {loss.item()}, average loss {epoch_loss}"
|
||
)
|
||
|
||
# 反向传播:根据当前损失值计算模型参数的梯度
|
||
loss.backward()
|
||
# 使用优化器更新模型参数,根据梯度调整模型参数
|
||
optimizer.step()
|
||
epoch_losses.append(epoch_loss)
|
||
# 每过一个batch就保存一次模型
|
||
torch.save(model.state_dict(), f'model/resnet18_{str(i + 1)}_{epoch_loss}.pth')
|
||
|
||
# loss 变化绘制代码
|
||
data = np.array(epoch_losses)
|
||
plt.figure(figsize=(10, 6))
|
||
plt.plot(data)
|
||
plt.title(f"{epoch} epoch loss change")
|
||
plt.xlabel("epoch")
|
||
plt.ylabel("Loss")
|
||
# 显示图像
|
||
plt.show()
|
||
print(f"completed. Model saved.")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
train(40) |