mirror of
https://github.com/luguoyixiazi/test_nine.git
synced 2025-12-05 14:42:49 +08:00
221 lines
7.4 KiB
Python
221 lines
7.4 KiB
Python
import os
|
||
|
||
import numpy as np
|
||
|
||
from train import MyResNet18, data_transform
|
||
from crop_image import crop_image, convert_png_to_jpg,draw_points_on_image
|
||
import torch
|
||
import time
|
||
import cv2
|
||
from PIL import Image
|
||
from io import BytesIO
|
||
import onnxruntime as ort
|
||
|
||
|
||
def predict(icon_image, bg_image):
|
||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||
model_path = os.path.join(current_dir, 'model', 'resnet18_38_0.021147585306924.pth')
|
||
coordinates = [
|
||
[1, 1],
|
||
[1, 2],
|
||
[1, 3],
|
||
[2, 1],
|
||
[2, 2],
|
||
[2, 3],
|
||
[3, 1],
|
||
[3, 2],
|
||
[3, 3],
|
||
]
|
||
target_images = []
|
||
target_images.append(data_transform(Image.open(BytesIO(icon_image))))
|
||
|
||
bg_images = crop_image(bg_image, coordinates)
|
||
for bg_image in bg_images:
|
||
target_images.append(data_transform(bg_image))
|
||
|
||
start = time.time()
|
||
model = MyResNet18(num_classes=91) # 这里的类别数要与训练时一致
|
||
model.load_state_dict(torch.load(model_path))
|
||
model.eval()
|
||
print("加载模型,耗时:", time.time() - start)
|
||
start = time.time()
|
||
|
||
target_images = torch.stack(target_images, dim=0)
|
||
target_outputs = model(target_images)
|
||
|
||
scores = []
|
||
|
||
for i, out_put in enumerate(target_outputs):
|
||
if i == 0:
|
||
# 增加维度,以便于计算
|
||
target_output = out_put.unsqueeze(0)
|
||
else:
|
||
similarity = torch.nn.functional.cosine_similarity(
|
||
target_output, out_put.unsqueeze(0)
|
||
)
|
||
scores.append(similarity.cpu().item())
|
||
# 从左到右,从上到下,依次为每张图片的置信度
|
||
print(scores)
|
||
# 对数组进行排序,保持下标
|
||
indexed_arr = list(enumerate(scores))
|
||
sorted_arr = sorted(indexed_arr, key=lambda x: x[1], reverse=True)
|
||
# 提取最大三个数及其下标
|
||
largest_three = sorted_arr[:3]
|
||
print(largest_three)
|
||
print("识别完成,耗时:", time.time() - start)
|
||
|
||
def load_model(name='PP-HGNetV2-B4.onnx'):
|
||
# 加载onnx模型
|
||
global session,input_name
|
||
start = time.time()
|
||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||
model_path = os.path.join(current_dir, 'model', name)
|
||
session = ort.InferenceSession(model_path)
|
||
input_name = session.get_inputs()[0].name
|
||
print("加载模型,耗时:", time.time() - start)
|
||
|
||
|
||
def predict_onnx(icon_image, bg_image, point = None):
|
||
coordinates = [
|
||
[1, 1],
|
||
[1, 2],
|
||
[1, 3],
|
||
[2, 1],
|
||
[2, 2],
|
||
[2, 3],
|
||
[3, 1],
|
||
[3, 2],
|
||
[3, 3],
|
||
]
|
||
|
||
def cosine_similarity(vec1, vec2):
|
||
# 将输入转换为 NumPy 数组
|
||
vec1 = np.array(vec1)
|
||
vec2 = np.array(vec2)
|
||
# 计算点积
|
||
dot_product = np.dot(vec1, vec2)
|
||
# 计算向量的范数
|
||
norm_vec1 = np.linalg.norm(vec1)
|
||
norm_vec2 = np.linalg.norm(vec2)
|
||
# 计算余弦相似度
|
||
similarity = dot_product / (norm_vec1 * norm_vec2)
|
||
return similarity
|
||
|
||
def data_transforms(image):
|
||
image = image.resize((224, 224))
|
||
image = Image.fromarray(cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2RGB))
|
||
image_array = np.array(image)
|
||
image_array = image_array.astype(np.float32) / 255.0
|
||
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
|
||
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
|
||
image_array = (image_array - mean) / std
|
||
image_array = np.transpose(image_array, (2, 0, 1))
|
||
# image_array = np.expand_dims(image_array, axis=0)
|
||
return image_array
|
||
|
||
target_images = []
|
||
target_images.append(data_transforms(Image.open(BytesIO(icon_image))))
|
||
bg_images = crop_image(bg_image, coordinates)
|
||
|
||
for one in bg_images:
|
||
target_images.append(data_transforms(one))
|
||
|
||
start = time.time()
|
||
outputs = session.run(None, {input_name: target_images})[0]
|
||
|
||
scores = []
|
||
for i, out_put in enumerate(outputs):
|
||
if i == 0:
|
||
target_output = out_put
|
||
else:
|
||
similarity = cosine_similarity(target_output, out_put)
|
||
scores.append(similarity)
|
||
# 从左到右,从上到下,依次为每张图片的置信度
|
||
# print(scores)
|
||
# 对数组进行排序,保持下标
|
||
indexed_arr = list(enumerate(scores))
|
||
sorted_arr = sorted(indexed_arr, key=lambda x: x[1], reverse=True)
|
||
# 提取最大三个数及其下标
|
||
if point == None:
|
||
largest_three = sorted_arr[:3]
|
||
answer = [coordinates[i[0]] for i in largest_three]
|
||
# 基于分数判断
|
||
else:
|
||
answer = [one[0] for one in sorted_arr if one[1] > point]
|
||
print(f"识别完成{answer},耗时: {time.time() - start}")
|
||
draw_points_on_image(bg_image, answer)
|
||
return answer
|
||
|
||
def predict_onnx_pdl(images_path):
|
||
coordinates = [
|
||
[1, 1],
|
||
[1, 2],
|
||
[1, 3],
|
||
[2, 1],
|
||
[2, 2],
|
||
[2, 3],
|
||
[3, 1],
|
||
[3, 2],
|
||
[3, 3],
|
||
]
|
||
def data_transforms(path):
|
||
# 打开图片
|
||
img = Image.open(path)
|
||
# 调整图片大小为232x224(假设最短边长度调整为232像素)
|
||
if img.width < img.height:
|
||
new_size = (232, int(232 * img.height / img.width))
|
||
else:
|
||
new_size = (int(232 * img.width / img.height), 232)
|
||
resized_img = img.resize(new_size, Image.BICUBIC)
|
||
# 裁剪图片为224x224
|
||
cropped_img = resized_img.crop((0, 0, 224, 224))
|
||
# 将图像转换为NumPy数组并进行归一化处理
|
||
img_array = np.array(cropped_img).astype(np.float32)
|
||
img_array /= 255.0
|
||
mean = [0.485, 0.456, 0.406]
|
||
std = [0.229, 0.224, 0.225]
|
||
img_array -= np.array(mean)
|
||
img_array /= np.array(std)
|
||
# 将通道维度移到前面
|
||
img_array = np.transpose(img_array, (2, 0, 1))
|
||
return img_array
|
||
images = []
|
||
for pic in sorted(os.listdir(images_path)):
|
||
if "cropped" not in pic:
|
||
continue
|
||
image_path = os.path.join(images_path,pic)
|
||
images.append(data_transforms(image_path))
|
||
if len(images) == 0:
|
||
raise FileNotFoundError(f"先使用切图代码切图至{image_path}再推理,图片命名如cropped_9.jpg,从0到9共十个,最后一个是检测目标")
|
||
start = time.time()
|
||
outputs = session.run(None, {input_name: images})[0]
|
||
result = [np.argmax(one) for one in outputs]
|
||
target = result[-1]
|
||
answer = [coordinates[index] for index in range(9) if result[index] == target]
|
||
print(f"识别完成{answer},耗时: {time.time() - start}")
|
||
with open(os.path.join(images_path,"nine.jpg"),'rb') as f:
|
||
bg_image = f.read()
|
||
draw_points_on_image(bg_image, answer)
|
||
return answer
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 使用resnet18.onnx
|
||
# load_model("resnet18.onnx")
|
||
# icon_path = "img_2_val/cropped_9.jpg"
|
||
# bg_path = "img_2_val/nine.jpg"
|
||
# with open(icon_path, "rb") as rb:
|
||
# if icon_path.endswith('.png'):
|
||
# icon_image = convert_png_to_jpg(rb.read())
|
||
# else:
|
||
# icon_image = rb.read()
|
||
# with open(bg_path, "rb") as rb:
|
||
# bg_image = rb.read()
|
||
# predict_onnx(icon_image, bg_image)
|
||
|
||
# 使用PP-HGNetV2-B4.onnx
|
||
load_model()
|
||
predict_onnx_pdl(r'img_saved\img_fail\7fe559a85bac4c03bc6ea7b2e85325bf')
|
||
else:
|
||
load_model() |