Files
test_nine/PP-HGNetV2-B4.yaml
2024-11-02 02:22:29 +08:00

43 lines
1.0 KiB
YAML

Global:
model: PP-HGNetV2-B4
mode: check_dataset # check_dataset/train/evaluate/predict
dataset_dir: "dataset"
device: gpu:0
output: "output"
CheckDataset:
convert:
enable: False
src_dataset_type: null
split:
enable: False
train_percent: null
val_percent: null
Train:
num_classes: 91
epochs_iters: 100
batch_size: 64
learning_rate: 0.05
pretrain_weight_path: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams
warmup_steps: 5
resume_path: null
log_interval: 1
eval_interval: 1
save_interval: 5
Evaluate:
weight_path: "output/best_model/best_model.pdparams"
log_interval: 1
Export:
weight_path: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams
# weight_path: "./output/best_model/inference/inference"
Predict:
batch_size: 1
model_dir: "output/best_model/inference"
input: "cropped_3.jpg"
kernel_option:
run_mode: paddle