Global: model: PP-HGNetV2-B4 mode: check_dataset # check_dataset/train/evaluate/predict dataset_dir: "dataset" device: gpu:0 output: "output" CheckDataset: convert: enable: False src_dataset_type: null split: enable: False train_percent: null val_percent: null Train: num_classes: 91 epochs_iters: 100 batch_size: 64 learning_rate: 0.05 pretrain_weight_path: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams warmup_steps: 5 resume_path: null log_interval: 1 eval_interval: 1 save_interval: 5 Evaluate: weight_path: "output/best_model/best_model.pdparams" log_interval: 1 Export: weight_path: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams # weight_path: "./output/best_model/inference/inference" Predict: batch_size: 1 model_dir: "output/best_model/inference" input: "cropped_3.jpg" kernel_option: run_mode: paddle