Files
EPD-nRF52-hema213/SDK/12.3.0_d7731ad/components/ble/peer_manager/id_manager.c
2025-03-04 21:47:57 +08:00

1096 lines
34 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(PEER_MANAGER)
#include "id_manager.h"
#include <string.h>
#include "ble.h"
#include "ble_gap.h"
#include "ble_conn_state.h"
#include "peer_manager_types.h"
#include "peer_database.h"
#include "peer_data_storage.h"
#include "nrf_soc.h"
#define IM_MAX_CONN_HANDLES (8)
#define IM_NO_INVALID_CONN_HANDLES (0xFF)
#define IM_ADDR_CLEARTEXT_LENGTH (3)
#define IM_ADDR_CIPHERTEXT_LENGTH (3)
// The number of registered event handlers.
#define IM_EVENT_HANDLERS_CNT (sizeof(m_evt_handlers) / sizeof(m_evt_handlers[0]))
// Identity Manager event handlers in Peer Manager and GATT Cache Manager.
extern void pm_im_evt_handler(im_evt_t const * p_event);
extern void gcm_im_evt_handler(im_evt_t const * p_event);
// Identity Manager events' handlers.
// The number of elements in this array is IM_EVENT_HANDLERS_CNT.
static im_evt_handler_t const m_evt_handlers[] =
{
pm_im_evt_handler,
gcm_im_evt_handler
};
typedef struct
{
pm_peer_id_t peer_id;
uint16_t conn_handle;
ble_gap_addr_t peer_address;
} im_connection_t;
static bool m_module_initialized;
static im_connection_t m_connections[8];
static ble_conn_state_user_flag_id_t m_conn_state_user_flag_id;
static uint8_t m_wlisted_peer_cnt;
static pm_peer_id_t m_wlisted_peers[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
#if (NRF_SD_BLE_API_VERSION == 2)
static ble_gap_addr_t m_current_id_addr;
#endif
static void internal_state_reset()
{
m_conn_state_user_flag_id = BLE_CONN_STATE_USER_FLAG_INVALID;
for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
{
m_connections[i].conn_handle = BLE_CONN_HANDLE_INVALID;
}
}
/**@brief Function for sending an event to all registered event handlers.
*
* @param[in] p_event The event to distribute.
*/
static void evt_send(im_evt_t * p_event)
{
for (uint32_t i = 0; i < IM_EVENT_HANDLERS_CNT; i++)
{
m_evt_handlers[i](p_event);
}
}
/**@brief Function finding a free position in m_connections.
*
* @detail All connection handles in the m_connections array are checked against the connection
* state module. The index of the first one that is not a connection handle for a current
* connection is returned. This position in the array can safely be used for a new connection.
*
* @return Either the index of a free position in the array or IM_NO_INVALID_CONN_HANDLES if no free
position exists.
*/
uint8_t get_free_connection()
{
for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
{
// Query the connection state module to check if the
// connection handle does not belong to a valid connection.
if (!ble_conn_state_user_flag_get(m_connections[i].conn_handle, m_conn_state_user_flag_id))
{
return i;
}
}
// If all connection handles belong to a valid connection, return IM_NO_INVALID_CONN_HANDLES.
return IM_NO_INVALID_CONN_HANDLES;
}
/**@brief Function finding a particular connection handle m_connections.
*
* @param[in] conn_handle The handle to find.
*
* @return Either the index of the conn_handle in the array or IM_NO_INVALID_CONN_HANDLES if the
* handle was not found.
*/
uint8_t get_connection_by_conn_handle(uint16_t conn_handle)
{
if (ble_conn_state_user_flag_get(conn_handle, m_conn_state_user_flag_id))
{
for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
{
if (m_connections[i].conn_handle == conn_handle)
{
return i;
}
}
}
// If all connection handles belong to a valid connection, return IM_NO_INVALID_CONN_HANDLES.
return IM_NO_INVALID_CONN_HANDLES;
}
/**@brief Function for registering a new connection instance.
*
* @param[in] conn_handle The handle of the new connection.
* @param[in] p_ble_addr The address used to connect.
*
* @return Either the index of the new connection in the array or IM_NO_INVALID_CONN_HANDLES if no
* free position exists.
*/
uint8_t new_connection(uint16_t conn_handle, ble_gap_addr_t * p_ble_addr)
{
uint8_t conn_index = IM_NO_INVALID_CONN_HANDLES;
if ((p_ble_addr != NULL) && (conn_handle != BLE_CONN_HANDLE_INVALID))
{
ble_conn_state_user_flag_set(conn_handle, m_conn_state_user_flag_id, true);
conn_index = get_connection_by_conn_handle(conn_handle);
if (conn_index == IM_NO_INVALID_CONN_HANDLES)
{
conn_index = get_free_connection();
}
if (conn_index != IM_NO_INVALID_CONN_HANDLES)
{
m_connections[conn_index].conn_handle = conn_handle;
m_connections[conn_index].peer_id = PM_PEER_ID_INVALID;
m_connections[conn_index].peer_address = *p_ble_addr;
}
}
return conn_index;
}
/**@brief Function checking the validity of an IRK
*
* @detail An all-zero IRK is not valid. This function will check if a given IRK is valid.
*
* @param[in] p_irk The IRK for which the validity is going to be checked.
*
* @retval true The IRK is valid.
* @retval false The IRK is invalid.
*/
bool is_valid_irk(ble_gap_irk_t const * p_irk)
{
NRF_PM_DEBUG_CHECK(p_irk != NULL);
for (uint32_t i = 0; i < BLE_GAP_SEC_KEY_LEN; i++)
{
if (p_irk->irk[i] != 0)
{
return true;
}
}
return false;
}
/**@brief Function for comparing two addresses to determine if they are identical
*
* @note The address type need to be identical, as well as every bit in the address itself.
*
* @param[in] p_addr1 The first address to be compared.
* @param[in] p_addr2 The second address to be compared.
*
* @retval true The addresses are identical.
* @retval false The addresses are not identical.
*/
bool addr_compare(ble_gap_addr_t const * p_addr1, ble_gap_addr_t const * p_addr2)
{
// @note emdi: use NRF_PM_DEBUG_CHECK ?
if ((p_addr1 == NULL) || (p_addr2 == NULL))
{
return false;
}
// Check that the addr type is identical, return false if it is not
if (p_addr1->addr_type != p_addr2->addr_type)
{
return false;
}
// Check if the addr bytes are is identical
return (memcmp(p_addr1->addr, p_addr2->addr, BLE_GAP_ADDR_LEN) == 0);
}
void im_ble_evt_handler(ble_evt_t * ble_evt)
{
ble_gap_evt_t gap_evt;
pm_peer_id_t bonded_matching_peer_id;
NRF_PM_DEBUG_CHECK(m_module_initialized);
if (ble_evt->header.evt_id != BLE_GAP_EVT_CONNECTED)
{
// Nothing to do.
return;
}
gap_evt = ble_evt->evt.gap_evt;
bonded_matching_peer_id = PM_PEER_ID_INVALID;
if ( gap_evt.params.connected.peer_addr.addr_type
!= BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
{
/* Search the database for bonding data matching the one that triggered the event.
* Public and static addresses can be matched on address alone, while resolvable
* random addresses can be resolved agains known IRKs. Non-resolvable random addresses
* are never matching because they are not longterm form of identification.
*/
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data;
pds_peer_data_iterate_prepare();
switch (gap_evt.params.connected.peer_addr.addr_type)
{
case BLE_GAP_ADDR_TYPE_PUBLIC:
case BLE_GAP_ADDR_TYPE_RANDOM_STATIC:
{
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (addr_compare(&gap_evt.params.connected.peer_addr,
&peer_data.p_bonding_data->peer_ble_id.id_addr_info))
{
bonded_matching_peer_id = peer_id;
break;
}
}
}
break;
case BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE:
{
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (im_address_resolve(&gap_evt.params.connected.peer_addr,
&peer_data.p_bonding_data->peer_ble_id.id_info))
{
bonded_matching_peer_id = peer_id;
break;
}
}
}
break;
default:
NRF_PM_DEBUG_CHECK(false);
break;
}
}
uint8_t new_index = new_connection(gap_evt.conn_handle,
&gap_evt.params.connected.peer_addr);
UNUSED_VARIABLE(new_index);
if (bonded_matching_peer_id != PM_PEER_ID_INVALID)
{
im_new_peer_id(gap_evt.conn_handle, bonded_matching_peer_id);
// Send a bonded peer event
im_evt_t im_evt;
im_evt.conn_handle = gap_evt.conn_handle;
im_evt.evt_id = IM_EVT_BONDED_PEER_CONNECTED;
evt_send(&im_evt);
}
}
/**@brief Function to compare two sets of bonding data to check if they belong to the same device.
* @note Invalid irks will never match even though they are identical.
*
* @param[in] p_bonding_data1 First bonding data for comparison
* @param[in] p_bonding_data2 Second bonding data for comparison
*
* @return True if the input matches, false if it does not.
*/
bool im_is_duplicate_bonding_data(pm_peer_data_bonding_t const * p_bonding_data1,
pm_peer_data_bonding_t const * p_bonding_data2)
{
NRF_PM_DEBUG_CHECK(p_bonding_data1 != NULL);
NRF_PM_DEBUG_CHECK(p_bonding_data2 != NULL);
if (!is_valid_irk(&p_bonding_data1->peer_ble_id.id_info))
{
return false;
}
bool duplicate_irk = (memcmp(p_bonding_data1->peer_ble_id.id_info.irk,
p_bonding_data2->peer_ble_id.id_info.irk,
BLE_GAP_SEC_KEY_LEN) == 0);
bool duplicate_addr = addr_compare(&p_bonding_data1->peer_ble_id.id_addr_info,
&p_bonding_data2->peer_ble_id.id_addr_info);
return duplicate_irk || duplicate_addr;
}
/**@brief Event handler for events from the Peer Database module.
* This function is extern in Peer Database.
*
* @param[in] p_event The event that has happend with peer id and flags.
*/
void im_pdb_evt_handler(pdb_evt_t const * p_event)
{
ret_code_t ret;
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data;
pm_peer_data_flash_t peer_data_duplicate;
NRF_PM_DEBUG_CHECK(m_module_initialized);
NRF_PM_DEBUG_CHECK(p_event != NULL);
if ((p_event->evt_id != PDB_EVT_WRITE_BUF_STORED) ||
(p_event->data_id != PM_PEER_DATA_ID_BONDING))
{
return;
}
// If new data about peer id has been stored it is compared to other peers peer ids in
// search of duplicates.
ret = pdb_peer_data_ptr_get(p_event->peer_id, PM_PEER_DATA_ID_BONDING, &peer_data);
if (ret != NRF_SUCCESS)
{
// @note emdi: this shouldn't happen, since the data was just stored, right?
NRF_PM_DEBUG_CHECK(false);
return;
}
pds_peer_data_iterate_prepare();
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data_duplicate))
{
if (p_event->peer_id == peer_id)
{
// Skip the iteration if the bonding data retrieved is for a peer
// with the same ID as the one contained in the event.
continue;
}
if (im_is_duplicate_bonding_data(peer_data.p_bonding_data,
peer_data_duplicate.p_bonding_data))
{
im_evt_t im_evt;
im_evt.conn_handle = im_conn_handle_get(p_event->peer_id);
im_evt.evt_id = IM_EVT_DUPLICATE_ID;
im_evt.params.duplicate_id.peer_id_1 = p_event->peer_id;
im_evt.params.duplicate_id.peer_id_2 = peer_id;
evt_send(&im_evt);
break;
}
}
}
ret_code_t im_init(void)
{
NRF_PM_DEBUG_CHECK(!m_module_initialized);
internal_state_reset();
m_conn_state_user_flag_id = ble_conn_state_user_flag_acquire();
if (m_conn_state_user_flag_id == BLE_CONN_STATE_USER_FLAG_INVALID)
{
return NRF_ERROR_INTERNAL;
}
#if (NRF_SD_BLE_API_VERSION == 2)
ret_code_t ret_code = sd_ble_gap_address_get(&m_current_id_addr);
if (ret_code != NRF_SUCCESS)
{
return NRF_ERROR_INTERNAL;
}
#endif
m_module_initialized = true;
return NRF_SUCCESS;
}
pm_peer_id_t im_peer_id_get_by_conn_handle(uint16_t conn_handle)
{
uint8_t conn_index;
NRF_PM_DEBUG_CHECK(m_module_initialized);
conn_index = get_connection_by_conn_handle(conn_handle);
if (conn_index != IM_NO_INVALID_CONN_HANDLES)
{
return m_connections[conn_index].peer_id;
}
return PM_PEER_ID_INVALID;
}
ret_code_t im_ble_addr_get(uint16_t conn_handle, ble_gap_addr_t * p_ble_addr)
{
uint8_t conn_index;
NRF_PM_DEBUG_CHECK(m_module_initialized);
NRF_PM_DEBUG_CHECK(p_ble_addr != NULL);
conn_index = get_connection_by_conn_handle(conn_handle);
if (conn_index != IM_NO_INVALID_CONN_HANDLES)
{
*p_ble_addr = m_connections[conn_index].peer_address;
return NRF_SUCCESS;
}
return NRF_ERROR_NOT_FOUND;
}
bool im_master_ids_compare(ble_gap_master_id_t const * p_master_id1,
ble_gap_master_id_t const * p_master_id2)
{
NRF_PM_DEBUG_CHECK(m_module_initialized);
NRF_PM_DEBUG_CHECK(p_master_id1 != NULL);
NRF_PM_DEBUG_CHECK(p_master_id2 != NULL);
if (!im_master_id_is_valid(p_master_id1))
{
return false;
}
if (p_master_id1->ediv != p_master_id2->ediv)
{
return false;
}
return (memcmp(p_master_id1->rand, p_master_id2->rand, BLE_GAP_SEC_RAND_LEN) == 0);
}
pm_peer_id_t im_peer_id_get_by_master_id(ble_gap_master_id_t * p_master_id)
{
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data;
NRF_PM_DEBUG_CHECK(m_module_initialized);
NRF_PM_DEBUG_CHECK(p_master_id != NULL);
pds_peer_data_iterate_prepare();
// For each stored peer, check if the master_id matches p_master_id
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->own_ltk.master_id) ||
im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->peer_ltk.master_id))
{
// If a matching master ID is found then return the peer ID.
return peer_id;
}
}
// If no matching master ID is found return PM_PEER_ID_INVALID.
return PM_PEER_ID_INVALID;
}
uint16_t im_conn_handle_get(pm_peer_id_t peer_id)
{
NRF_PM_DEBUG_CHECK(m_module_initialized);
for (uint32_t i = 0; i < IM_MAX_CONN_HANDLES; i++)
{
if (peer_id == m_connections[i].peer_id)
{
return m_connections[i].conn_handle;
}
}
return BLE_CONN_HANDLE_INVALID;
}
bool im_master_id_is_valid(ble_gap_master_id_t const * p_master_id)
{
NRF_PM_DEBUG_CHECK(m_module_initialized);
if (p_master_id->ediv != 0)
{
return true;
}
for (uint32_t i = 0; i < BLE_GAP_SEC_RAND_LEN; i++)
{
if (p_master_id->rand[i] != 0)
{
return true;
}
}
return false;
}
/**@brief Function to set the peer ID associated with a connection handle.
*
* @param[in] conn_handle The connection handle.
* @param[in] peer_id The peer ID to associate with @c conn_handle.
*/
static void peer_id_set(uint16_t conn_handle, pm_peer_id_t peer_id)
{
uint8_t conn_index = get_connection_by_conn_handle(conn_handle);
if (conn_index != IM_NO_INVALID_CONN_HANDLES)
{
m_connections[conn_index].peer_id = peer_id;
}
}
void im_new_peer_id(uint16_t conn_handle, pm_peer_id_t peer_id)
{
NRF_PM_DEBUG_CHECK(m_module_initialized);
peer_id_set(conn_handle, peer_id);
}
ret_code_t im_peer_free(pm_peer_id_t peer_id)
{
uint16_t conn_handle;
ret_code_t ret;
NRF_PM_DEBUG_CHECK(m_module_initialized);
conn_handle = im_conn_handle_get(peer_id);
ret = pdb_peer_free(peer_id);
if ((conn_handle != BLE_CONN_HANDLE_INVALID) && (ret == NRF_SUCCESS))
{
peer_id_set(conn_handle, PM_PEER_ID_INVALID);
}
return ret;
}
/**@brief Given a list of peers, loads their GAP address and IRK into the provided buffers.
*/
static ret_code_t peers_id_keys_get(pm_peer_id_t const * p_peers,
uint32_t peer_cnt,
ble_gap_addr_t * p_gap_addrs,
uint32_t * p_addr_cnt,
ble_gap_irk_t * p_gap_irks,
uint32_t * p_irk_cnt)
{
ret_code_t ret;
pm_peer_data_bonding_t bond_data;
pm_peer_data_t peer_data;
uint32_t const buf_size = sizeof(bond_data);
bool copy_addrs = false;
bool copy_irks = false;
NRF_PM_DEBUG_CHECK(p_peers != NULL);
// One of these two has to be provided.
NRF_PM_DEBUG_CHECK((p_gap_addrs != NULL) || (p_gap_irks != NULL));
if ((p_gap_addrs != NULL) && (p_addr_cnt != NULL))
{
NRF_PM_DEBUG_CHECK((*p_addr_cnt) >= peer_cnt);
copy_addrs = true;
*p_addr_cnt = 0;
}
if ((p_gap_irks != NULL) && (p_irk_cnt != NULL))
{
NRF_PM_DEBUG_CHECK((*p_irk_cnt) >= peer_cnt);
copy_irks = true;
*p_irk_cnt = 0;
}
memset(&peer_data, 0x00, sizeof(peer_data));
peer_data.p_bonding_data = &bond_data;
// Read through flash memory and look for peers ID keys.
for (uint32_t i = 0; i < peer_cnt; i++)
{
memset(&bond_data, 0x00, sizeof(bond_data));
// Read peer data from flash.
ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
&peer_data, &buf_size);
if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
{
// Peer data coulnd't be found in flash or peer ID is not valid.
return NRF_ERROR_NOT_FOUND;
}
uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
(addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
{
// The address shared by the peer during bonding can't be used for whitelisting.
return BLE_ERROR_GAP_INVALID_BLE_ADDR;
}
// Copy the GAP address.
if (copy_addrs)
{
memcpy(&p_gap_addrs[i], &bond_data.peer_ble_id.id_addr_info, sizeof(ble_gap_addr_t));
(*p_addr_cnt)++;
}
// Copy the IRK.
if (copy_irks)
{
memcpy(&p_gap_irks[i], bond_data.peer_ble_id.id_info.irk, BLE_GAP_SEC_KEY_LEN);
(*p_irk_cnt)++;
}
}
return NRF_SUCCESS;
}
ret_code_t im_device_identities_list_set(pm_peer_id_t const * p_peers,
uint32_t peer_cnt)
{
#if (NRF_SD_BLE_API_VERSION == 3)
ret_code_t ret;
pm_peer_data_t peer_data;
pm_peer_data_bonding_t bond_data;
ble_gap_id_key_t keys[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
ble_gap_id_key_t const * key_ptrs[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
if ((p_peers == NULL) || (peer_cnt == 0))
{
// Clear the device identities list.
return sd_ble_gap_device_identities_set(NULL, NULL, 0);
}
peer_data.p_bonding_data = &bond_data;
uint32_t const buf_size = sizeof(bond_data);
memset(keys, 0x00, sizeof(keys));
for (uint32_t i = 0; i < BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT; i++)
{
key_ptrs[i] = &keys[i];
}
for (uint32_t i = 0; i < peer_cnt; i++)
{
memset(&bond_data, 0x00, sizeof(bond_data));
// Read peer data from flash.
ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
&peer_data, &buf_size);
if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
{
// Peer data coulnd't be found in flash or peer ID is not valid.
return NRF_ERROR_NOT_FOUND;
}
uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
(addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
{
// The address shared by the peer during bonding can't be whitelisted.
return BLE_ERROR_GAP_INVALID_BLE_ADDR;
}
// Copy data to the buffer.
memcpy(&keys[i], &bond_data.peer_ble_id, sizeof(ble_gap_id_key_t));
}
return sd_ble_gap_device_identities_set(key_ptrs, NULL, peer_cnt);
#else
return NRF_ERROR_NOT_SUPPORTED;
#endif
}
#if (NRF_SD_BLE_API_VERSION == 2)
static ret_code_t address_set_v2(uint8_t cycle_mode, ble_gap_addr_t * p_addr)
{
NRF_PM_DEBUG_CHECK(p_addr != NULL);
ret_code_t ret = sd_ble_gap_address_set(cycle_mode, p_addr);
switch (ret)
{
case NRF_SUCCESS:
case NRF_ERROR_BUSY:
case NRF_ERROR_INVALID_STATE:
case NRF_ERROR_INVALID_PARAM: // If cycle_mode is not AUTO or NONE.
case BLE_ERROR_GAP_INVALID_BLE_ADDR: // If the GAP address is not valid.
return ret;
default:
return NRF_ERROR_INTERNAL;
}
}
#endif
ret_code_t im_id_addr_set(ble_gap_addr_t const * p_addr)
{
#if (NRF_SD_BLE_API_VERSION == 2)
ret_code_t ret;
ble_gap_addr_t current_addr;
NRF_PM_DEBUG_CHECK(p_addr != NULL);
(void) sd_ble_gap_address_get(&current_addr);
ret = address_set_v2(BLE_GAP_ADDR_CYCLE_MODE_NONE, (ble_gap_addr_t *)p_addr);
if (ret != NRF_SUCCESS)
{
return ret;
}
if ( current_addr.addr_type == BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE
|| current_addr.addr_type == BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
{
// If currently using privacy, it must be re-enabled.
// We force AUTO when privacy is enabled.
ret = address_set_v2(BLE_GAP_ADDR_CYCLE_MODE_AUTO, &current_addr);
if (ret != NRF_SUCCESS)
{
return ret;
}
}
memcpy(&m_current_id_addr, p_addr, sizeof(ble_gap_addr_t));
return NRF_SUCCESS;
#else
return sd_ble_gap_addr_set(p_addr);
#endif
}
ret_code_t im_id_addr_get(ble_gap_addr_t * p_addr)
{
NRF_PM_DEBUG_CHECK(p_addr != NULL);
#if (NRF_SD_BLE_API_VERSION == 2)
memcpy(p_addr, &m_current_id_addr, sizeof(ble_gap_addr_t));
return NRF_SUCCESS;
#else
return sd_ble_gap_addr_get(p_addr);
#endif
}
ret_code_t im_privacy_set(pm_privacy_params_t const * p_privacy_params)
{
#if (NRF_SD_BLE_API_VERSION == 2)
ret_code_t ret;
ble_gap_addr_t privacy_addr;
ble_gap_irk_t current_irk;
ble_opt_t privacy_options;
ble_opt_t current_privacy_options;
NRF_PM_DEBUG_CHECK(p_privacy_params != NULL);
privacy_addr.addr_type = p_privacy_params->private_addr_type;
privacy_options.gap_opt.privacy.p_irk = p_privacy_params->p_device_irk;
privacy_options.gap_opt.privacy.interval_s = p_privacy_params->private_addr_cycle_s;
current_privacy_options.gap_opt.privacy.p_irk = &current_irk;
// Can not fail.
(void) sd_ble_opt_get(BLE_GAP_OPT_PRIVACY, &current_privacy_options);
(void) sd_ble_opt_set(BLE_GAP_OPT_PRIVACY, &privacy_options);
if (p_privacy_params->privacy_mode == BLE_GAP_PRIVACY_MODE_OFF)
{
ret = address_set_v2(BLE_GAP_ADDR_CYCLE_MODE_NONE, &m_current_id_addr);
}
else
{
ret = address_set_v2(BLE_GAP_ADDR_CYCLE_MODE_AUTO, &privacy_addr);
}
if (ret != NRF_SUCCESS)
{
// Restore previous settings.
(void) sd_ble_opt_set(BLE_GAP_OPT_PRIVACY, &current_privacy_options);
}
// NRF_ERROR_BUSY,
// NRF_ERROR_INVALID_STATE,
// NRF_ERROR_INVALID_PARAM, if address type is not valid.
return ret;
#else
return sd_ble_gap_privacy_set(p_privacy_params);
#endif
}
ret_code_t im_privacy_get(pm_privacy_params_t * p_privacy_params)
{
#if (NRF_SD_BLE_API_VERSION == 2)
ble_gap_addr_t cur_addr;
ble_opt_t cur_privacy_opt;
NRF_PM_DEBUG_CHECK(p_privacy_params != NULL);
NRF_PM_DEBUG_CHECK(p_privacy_params->p_device_irk != NULL);
cur_privacy_opt.gap_opt.privacy.p_irk = p_privacy_params->p_device_irk;
// Can not fail.
(void) sd_ble_gap_address_get(&cur_addr);
if ( cur_addr.addr_type == BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE
|| cur_addr.addr_type == BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
{
p_privacy_params->privacy_mode = BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY;
p_privacy_params->private_addr_type = cur_addr.addr_type;
}
else
{
p_privacy_params->privacy_mode = BLE_GAP_PRIVACY_MODE_OFF;
}
// Can not fail.
(void) sd_ble_opt_get(BLE_GAP_OPT_PRIVACY, &cur_privacy_opt);
p_privacy_params->private_addr_cycle_s = cur_privacy_opt.gap_opt.privacy.interval_s;
return NRF_SUCCESS;
#else
return sd_ble_gap_privacy_get(p_privacy_params);
#endif
}
/* Create a whitelist for the user using the cached list of peers.
* This whitelist is meant to be provided by the application to the Advertising module.
*/
ret_code_t im_whitelist_get(ble_gap_addr_t * p_addrs,
uint32_t * p_addr_cnt,
ble_gap_irk_t * p_irks,
uint32_t * p_irk_cnt)
{
// One of the two buffers has to be provided.
NRF_PM_DEBUG_CHECK((p_addrs != NULL) || (p_irks != NULL));
NRF_PM_DEBUG_CHECK((p_addr_cnt != NULL) || (p_irk_cnt != NULL));
if (((p_addr_cnt != NULL) && (m_wlisted_peer_cnt > *p_addr_cnt)) ||
((p_irk_cnt != NULL) && (m_wlisted_peer_cnt > *p_irk_cnt)))
{
// The size of the cached list of peers is larger than the provided buffers.
return NRF_ERROR_NO_MEM;
}
// NRF_SUCCESS or
// NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
// BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
return peers_id_keys_get(m_wlisted_peers, m_wlisted_peer_cnt,
p_addrs, p_addr_cnt,
p_irks, p_irk_cnt);
}
/* Copies the peers to whitelist into a local cache.
* The cached list will be used by im_whitelist_get() to retrieve the active whitelist.
* For SoftDevices 3x, also loads the peers' GAP addresses and whitelists them using
* sd_ble_gap_whitelist_set().
*/
ret_code_t im_whitelist_set(pm_peer_id_t const * p_peers,
uint32_t peer_cnt)
{
// Clear the cache of whitelisted peers.
memset(m_wlisted_peers, 0x00, sizeof(m_wlisted_peers));
if ((p_peers == NULL) || (peer_cnt == 0))
{
// Clear the current whitelist.
m_wlisted_peer_cnt = 0;
#if (NRF_SD_BLE_API_VERSION == 3)
// NRF_SUCCESS, or
// BLE_GAP_ERROR_WHITELIST_IN_USE
return sd_ble_gap_whitelist_set(NULL, 0);
#else
// The cached list of whitelisted peers is already cleared; nothing to do.
return NRF_SUCCESS;
#endif
}
// @todo emdi: should not ever cache more than BLE_GAP_WHITELIST_ADDR_MAX_COUNT...
// Copy the new whitelisted peers.
m_wlisted_peer_cnt = peer_cnt;
memcpy(m_wlisted_peers, p_peers, sizeof(pm_peer_id_t) * peer_cnt);
#if (NRF_SD_BLE_API_VERSION == 3)
ret_code_t ret;
uint32_t wlist_addr_cnt = 0;
ble_gap_addr_t const * addr_ptrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
ble_gap_addr_t addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
memset(addrs, 0x00, sizeof(addrs));
// Fetch GAP addresses for these peers, but don't fetch IRKs.
ret = peers_id_keys_get(p_peers, peer_cnt, addrs, &wlist_addr_cnt, NULL, NULL);
if (ret != NRF_SUCCESS)
{
// NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
// BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
return ret;
}
for (uint32_t i = 0; i < BLE_GAP_WHITELIST_ADDR_MAX_COUNT; i++)
{
addr_ptrs[i] = &addrs[i];
}
// NRF_ERROR_DATA_SIZE, if peer_cnt > BLE_GAP_WHITELIST_ADDR_MAX_COUNT.
// BLE_ERROR_GAP_WHITELIST_IN_USE, if a whitelist is in use.
return sd_ble_gap_whitelist_set(addr_ptrs, peer_cnt);
#else
return NRF_SUCCESS;
#endif
}
/**@brief Function for calculating the ah() hash function described in Bluetooth core specification
* 4.2 section 3.H.2.2.2.
*
* @detail BLE uses a hash function to calculate the first half of a resolvable address
* from the second half of the address and an irk. This function will use the ECB
* periferal to hash these data acording to the Bluetooth core specification.
*
* @note The ECB expect little endian input and output.
* This function expect big endian and will reverse the data as necessary.
*
* @param[in] p_k The key used in the hash function.
* For address resolution this is should be the irk.
* The array must have a length of 16.
* @param[in] p_r The rand used in the hash function. For generating a new address
* this would be a random number. For resolving a resolvable address
* this would be the last half of the address being resolved.
* The array must have a length of 3.
* @param[out] p_local_hash The result of the hash operation. For address resolution this
* will match the first half of the address being resolved if and only
* if the irk used in the hash function is the same one used to generate
* the address.
* The array must have a length of 16.
*/
void ah(uint8_t const * p_k, uint8_t const * p_r, uint8_t * p_local_hash)
{
nrf_ecb_hal_data_t ecb_hal_data;
for (uint32_t i = 0; i < SOC_ECB_KEY_LENGTH; i++)
{
ecb_hal_data.key[i] = p_k[SOC_ECB_KEY_LENGTH - 1 - i];
}
memset(ecb_hal_data.cleartext, 0, SOC_ECB_KEY_LENGTH - IM_ADDR_CLEARTEXT_LENGTH);
for (uint32_t i = 0; i < IM_ADDR_CLEARTEXT_LENGTH; i++)
{
ecb_hal_data.cleartext[SOC_ECB_KEY_LENGTH - 1 - i] = p_r[i];
}
// Can only return NRF_SUCCESS.
(void) sd_ecb_block_encrypt(&ecb_hal_data);
for (uint32_t i = 0; i < IM_ADDR_CIPHERTEXT_LENGTH; i++)
{
p_local_hash[i] = ecb_hal_data.ciphertext[SOC_ECB_KEY_LENGTH - 1 - i];
}
}
bool im_address_resolve(ble_gap_addr_t const * p_addr, ble_gap_irk_t const * p_irk)
{
NRF_PM_DEBUG_CHECK(m_module_initialized);
uint8_t hash[IM_ADDR_CIPHERTEXT_LENGTH];
uint8_t local_hash[IM_ADDR_CIPHERTEXT_LENGTH];
uint8_t prand[IM_ADDR_CLEARTEXT_LENGTH];
if (p_addr->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
{
return false;
}
memcpy(hash, p_addr->addr, IM_ADDR_CIPHERTEXT_LENGTH);
memcpy(prand, &p_addr->addr[IM_ADDR_CIPHERTEXT_LENGTH], IM_ADDR_CLEARTEXT_LENGTH);
ah(p_irk->irk, prand, local_hash);
return (memcmp(hash, local_hash, IM_ADDR_CIPHERTEXT_LENGTH) == 0);
}
#endif // NRF_MODULE_ENABLED(PEER_MANAGER)