Files
EPD-nRF52-hema213/SDK/12.3.0_d7731ad/components/libraries/fstorage/fstorage.c
2025-03-04 21:47:57 +08:00

562 lines
15 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(FSTORAGE)
#include "fstorage.h"
#include "fstorage_internal_defs.h"
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "nrf_error.h"
#include "nrf_soc.h"
static uint8_t m_flags; // fstorage status flags.
static fs_op_queue_t m_queue; // Queue of requested operations.
static uint8_t m_retry_count; // Number of times the last flash operation was retried.
// Sends events to the application.
static void send_event(fs_op_t const * const p_op, fs_ret_t result)
{
fs_evt_t evt;
memset(&evt, 0x00, sizeof(fs_evt_t));
switch (p_op->op_code)
{
case FS_OP_STORE:
evt.id = FS_EVT_STORE;
evt.store.p_data = p_op->store.p_dest;
evt.store.length_words = p_op->store.length_words;
break;
case FS_OP_ERASE:
evt.id = FS_EVT_ERASE;
evt.erase.first_page = p_op->erase.page - p_op->erase.pages_erased;
evt.erase.last_page = p_op->erase.page;
break;
default:
// Should not happen.
break;
}
evt.p_context = p_op->p_context;
p_op->p_config->callback(&evt, result);
}
// Checks that a configuration is non-NULL and within section variable bounds.
static bool check_config(fs_config_t const * const config)
{
#ifndef DFU_SUPPORT_SIGNING
if ((config != NULL) &&
(FS_SECTION_VARS_START_ADDR <= (uint32_t)config) &&
(FS_SECTION_VARS_END_ADDR > (uint32_t)config))
{
return true;
}
return false;
#else
return true;
#endif
}
// Executes a store operation.
static uint32_t store_execute(fs_op_t const * const p_op)
{
uint16_t chunk_len;
if ((p_op->store.length_words - p_op->store.offset) < FS_MAX_WRITE_SIZE_WORDS)
{
chunk_len = p_op->store.length_words - p_op->store.offset;
}
else
{
chunk_len = FS_MAX_WRITE_SIZE_WORDS;
}
return sd_flash_write((uint32_t*)p_op->store.p_dest + p_op->store.offset,
(uint32_t*)p_op->store.p_src + p_op->store.offset,
chunk_len);
}
// Executes an erase operation.
static uint32_t erase_execute(fs_op_t const * const p_op)
{
return sd_flash_page_erase(p_op->erase.page);
}
// Advances the queue, wrapping around if necessary.
// If no elements are left in the queue, clears the FS_FLAG_PROCESSING flag.
static void queue_advance(void)
{
if (--m_queue.count == 0)
{
m_flags &= ~FS_FLAG_PROCESSING;
}
if (++m_queue.rp == FS_QUEUE_SIZE)
{
m_queue.rp = 0;
}
}
// Processes the current element in the queue. If the queue is empty, does nothing.
static void queue_process(void)
{
uint32_t ret;
fs_op_t * const p_op = &m_queue.op[m_queue.rp];
if (m_queue.count > 0)
{
switch (p_op->op_code)
{
case FS_OP_STORE:
ret = store_execute(p_op);
break;
case FS_OP_ERASE:
ret = erase_execute(p_op);
break;
default:
ret = FS_ERR_INTERNAL;
break;
}
// There is a pending flash operation which was not initiated by this module.
// Stop processing the queue and wait for a system event.
if (ret == NRF_ERROR_BUSY)
{
m_flags &= ~FS_FLAG_PROCESSING;
m_flags |= FS_FLAG_FLASH_REQ_PENDING;
}
else if (ret != NRF_SUCCESS)
{
// An error has occurred.
send_event(p_op, FS_ERR_INTERNAL);
}
else
{
// Operation is executing.
}
}
}
// Starts processing the queue if there are no pending flash operations, both inside and
// outside this module. Returns immediately otherwise.
static void queue_start(void)
{
if (!(m_flags & FS_FLAG_PROCESSING) &&
!(m_flags & FS_FLAG_FLASH_REQ_PENDING))
{
m_flags |= FS_FLAG_PROCESSING;
queue_process();
}
}
// Flash operation success callback handler. Keeps track of the progress of an operation.
// If it has finished, advances the queue and notifies the application.
static void on_operation_success(fs_op_t * const p_op)
{
m_retry_count = 0;
switch (p_op->op_code)
{
case FS_OP_STORE:
{
uint16_t chunk_len;
if ((p_op->store.length_words - p_op->store.offset) < FS_MAX_WRITE_SIZE_WORDS)
{
chunk_len = p_op->store.length_words - p_op->store.offset;
}
else
{
chunk_len = FS_MAX_WRITE_SIZE_WORDS;
}
p_op->store.offset += chunk_len;
if (p_op->store.offset == p_op->store.length_words)
{
// The operation has finished.
send_event(p_op, FS_SUCCESS);
queue_advance();
}
}
break;
case FS_OP_ERASE:
{
p_op->erase.page++;
p_op->erase.pages_erased++;
if (p_op->erase.pages_erased == p_op->erase.pages_to_erase)
{
send_event(p_op, FS_SUCCESS);
queue_advance();
}
}
break;
default:
// Should not happen.
break;
}
}
// Flash operation failure callback handler. If the maximum number of retries has
// been reached, notifies the application and advances the queue.
static void on_operation_failure(fs_op_t const * const p_op)
{
if (++m_retry_count > FS_OP_MAX_RETRIES)
{
m_retry_count = 0;
send_event(p_op, FS_ERR_OPERATION_TIMEOUT);
queue_advance();
}
}
// Retrieves a pointer to the next free element in the queue.
// Additionally, increases the number of elements stored in the queue.
static bool queue_get_next_free(fs_op_t ** p_op)
{
uint32_t idx;
if (m_queue.count == FS_QUEUE_SIZE)
{
return false;
}
idx = ((m_queue.rp + m_queue.count) < FS_QUEUE_SIZE) ?
(m_queue.rp + m_queue.count) : ((m_queue.rp + m_queue.count)-FS_QUEUE_SIZE);
m_queue.count++;
// Zero the element so that unassigned fields will be zero.
memset(&m_queue.op[idx], 0x00, sizeof(fs_op_t));
*p_op = &m_queue.op[idx];
return true;
}
fs_ret_t fs_init(void)
{
uint32_t const total_users = FS_SECTION_VARS_COUNT;
uint32_t configs_to_init = FS_SECTION_VARS_COUNT;
uint32_t const * p_current_end = FS_PAGE_END_ADDR;
if (m_flags & FS_FLAG_INITIALIZED)
{
return FS_SUCCESS;
}
// Each fstorage user has registered one configuration.
// The total number of users (and thus the total number of configurations) is
// kept in total_users. Some of these users might have specified their flash
// boundaries in their configurations. This function sets the flash boundaries
// for the remaining user configurations without further user interaction.
// First, determine how many user configurations this function has to initialize,
// out of the total. This number will be kept in configs_to_init.
for (uint32_t i = 0; i < total_users; i++)
{
fs_config_t const * const p_config = FS_SECTION_VARS_GET(i);
if ((p_config->p_start_addr != NULL) &&
(p_config->p_end_addr != NULL))
{
configs_to_init--;
}
}
// For each configuration to initialize, assign flash space based on the priority
// specified. Higher priority means a higher memory address.
for (uint32_t i = 0; i < configs_to_init; i++)
{
fs_config_t * p_config_i = FS_SECTION_VARS_GET(i);
uint8_t max_priority = 0;
uint8_t max_index = i;
for (uint32_t j = 0; j < total_users; j++)
{
fs_config_t const * const p_config_j = FS_SECTION_VARS_GET(j);
#if 0
if (p_config_j->priority == p_config_i->priority)
{
// Duplicated priorities are not allowed.
return FS_ERR_INVALID_CFG;
}
#endif
if ((p_config_j->p_start_addr != NULL) &&
(p_config_j->p_end_addr != NULL))
{
// When calculating the configuration with the next highest priority
// skip configurations which were already set during a previous iteration.
// This check needs to be here to prevent re-using the configurations
// with higher priorities which we used in previous iterations.
continue;
}
if (p_config_j->priority > max_priority)
{
max_priority = p_config_j->priority;
max_index = j;
}
}
p_config_i = FS_SECTION_VARS_GET(max_index);
p_config_i->p_end_addr = p_current_end;
p_config_i->p_start_addr = p_current_end - (p_config_i->num_pages * FS_PAGE_SIZE_WORDS);
p_current_end = p_config_i->p_start_addr;
}
m_flags |= FS_FLAG_INITIALIZED;
return FS_SUCCESS;
}
fs_ret_t fs_fake_init(void)
{
m_flags |= FS_FLAG_INITIALIZED;
return FS_SUCCESS;
}
fs_ret_t fs_store(fs_config_t const * const p_config,
uint32_t const * const p_dest,
uint32_t const * const p_src,
uint16_t const length_words,
void * p_context)
{
fs_op_t * p_op;
if (!(m_flags & FS_FLAG_INITIALIZED))
{
return FS_ERR_NOT_INITIALIZED;
}
if (!check_config(p_config))
{
return FS_ERR_INVALID_CFG;
}
if ((p_src == NULL) || (p_dest == NULL))
{
return FS_ERR_NULL_ARG;
}
// Check that both pointers are word aligned.
if (((uint32_t)p_src & 0x03) ||
((uint32_t)p_dest & 0x03))
{
return FS_ERR_UNALIGNED_ADDR;
}
// Check that the operation doesn't go outside the client's memory boundaries.
if ((p_config->p_start_addr > p_dest) ||
(p_config->p_end_addr < (p_dest + length_words)))
{
return FS_ERR_INVALID_ADDR;
}
if (length_words == 0)
{
return FS_ERR_INVALID_ARG;
}
if (!queue_get_next_free(&p_op))
{
return FS_ERR_QUEUE_FULL;
}
// Initialize the operation.
p_op->p_context = p_context;
p_op->p_config = p_config;
p_op->op_code = FS_OP_STORE;
p_op->store.p_src = p_src;
p_op->store.p_dest = p_dest;
p_op->store.length_words = length_words;
queue_start();
return FS_SUCCESS;
}
fs_ret_t fs_erase(fs_config_t const * const p_config,
uint32_t const * const p_page_addr,
uint16_t const num_pages,
void * p_context)
{
fs_op_t * p_op;
if (!(m_flags & FS_FLAG_INITIALIZED))
{
return FS_ERR_NOT_INITIALIZED;
}
if (!check_config(p_config))
{
return FS_ERR_INVALID_CFG;
}
if (p_page_addr == NULL)
{
return FS_ERR_NULL_ARG;
}
// Check that the page is aligned to a page boundary.
if (((uint32_t)p_page_addr & (FS_PAGE_SIZE-1)) != 0)
{
return FS_ERR_UNALIGNED_ADDR;
}
// Check that the operation doesn't go outside the client's memory boundaries.
if ((p_page_addr < p_config->p_start_addr) ||
(p_page_addr + (FS_PAGE_SIZE_WORDS * num_pages) > p_config->p_end_addr))
{
return FS_ERR_INVALID_ADDR;
}
if (num_pages == 0)
{
return FS_ERR_INVALID_ARG;
}
if (!queue_get_next_free(&p_op))
{
return FS_ERR_QUEUE_FULL;
}
// Initialize the operation.
p_op->p_context = p_context;
p_op->p_config = p_config;
p_op->op_code = FS_OP_ERASE;
p_op->erase.page = ((uint32_t)p_page_addr / FS_PAGE_SIZE);
p_op->erase.pages_to_erase = num_pages;
queue_start();
return FS_SUCCESS;
}
fs_ret_t fs_queued_op_count_get(uint32_t * const p_op_count)
{
if (p_op_count == NULL)
{
return FS_ERR_NULL_ARG;
}
*p_op_count = m_queue.count;
return FS_SUCCESS;
}
void fs_sys_event_handler(uint32_t sys_evt)
{
fs_op_t * const p_op = &m_queue.op[m_queue.rp];
if (m_flags & FS_FLAG_PROCESSING)
{
// A flash operation was initiated by this module. Handle the result.
switch (sys_evt)
{
case NRF_EVT_FLASH_OPERATION_SUCCESS:
on_operation_success(p_op);
break;
case NRF_EVT_FLASH_OPERATION_ERROR:
on_operation_failure(p_op);
break;
}
}
else if ((m_flags & FS_FLAG_FLASH_REQ_PENDING))
{
// A flash operation was initiated outside this module.
// A callback which indicates that it has finished was received.
m_flags &= ~FS_FLAG_FLASH_REQ_PENDING;
// If there are any elements left in the queue, set FS_FLAG_PROCESSING.
if (m_queue.count > 0)
{
m_flags |= FS_FLAG_PROCESSING;
}
}
// Resume processing the queue, if necessary.
queue_process();
}
bool fs_queue_is_full(void)
{
return (m_queue.count == FS_QUEUE_SIZE);
}
bool fs_queue_is_empty(void)
{
return (m_queue.count == 0);
}
#endif //NRF_MODULE_ENABLED(FSTORAGE)