move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,405 @@
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(APP_TWI)
#include "app_twi.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
// Increase specified queue index and when it goes outside the queue move it
// on the beginning of the queue.
#define INCREASE_IDX(idx, p_queue) \
do { \
++idx; \
p_queue->idx = (idx > p_queue->size) ? 0 : idx; \
} while (0)
static bool queue_put(app_twi_queue_t * p_queue,
app_twi_transaction_t const * p_transaction)
{
// [use a local variable to avoid using two volatile variables in one
// expression]
uint8_t write_idx = p_queue->write_idx;
// If the queue is already full, we cannot put any more elements into it.
if ((write_idx == p_queue->size && p_queue->read_idx == 0) ||
write_idx == p_queue->read_idx - 1)
{
return false;
}
// Write the new element on the position specified by the write index.
p_queue->p_buffer[write_idx] = p_transaction;
// Increase the write index and when it goes outside the queue move it
// on the beginning.
INCREASE_IDX(write_idx, p_queue);
return true;
}
static app_twi_transaction_t const * queue_get(app_twi_queue_t * p_queue)
{
// [use a local variable to avoid using two volatile variables in one
// expression]
uint8_t read_idx = p_queue->read_idx;
// If the queue is empty, we cannot return any more elements from it.
if (read_idx == p_queue->write_idx)
{
return NULL;
}
// Read the element from the position specified by the read index.
app_twi_transaction_t const * p_transaction = p_queue->p_buffer[read_idx];
// Increase the read index and when it goes outside the queue move it
// on the beginning.
INCREASE_IDX(read_idx, p_queue);
return p_transaction;
}
static ret_code_t start_transfer(app_twi_t * p_app_twi)
{
ASSERT(p_app_twi != NULL);
// [use a local variable to avoid using two volatile variables in one
// expression]
uint8_t current_transfer_idx = p_app_twi->current_transfer_idx;
app_twi_transfer_t const * p_transfer =
&p_app_twi->p_current_transaction->p_transfers[current_transfer_idx];
uint8_t address = APP_TWI_OP_ADDRESS(p_transfer->operation);
nrf_drv_twi_xfer_desc_t xfer_desc;
uint32_t flags;
xfer_desc.address = address;
xfer_desc.p_primary_buf = p_transfer->p_data;
xfer_desc.primary_length = p_transfer->length;
/* If it is possible try to bind two transfers together. They can be combined if:
* - there is no stop condition after current transfer.
* - current transfer is TX.
* - there is at least one more transfer in the transaction.
* - address of next trnasfer is the same as current transfer.
*/
if ((p_transfer->flags & APP_TWI_NO_STOP) &&
!APP_TWI_IS_READ_OP(p_transfer->operation) &&
((current_transfer_idx + 1) < p_app_twi->p_current_transaction->number_of_transfers) &&
APP_TWI_OP_ADDRESS(p_transfer->operation) ==
APP_TWI_OP_ADDRESS(p_app_twi->p_current_transaction->p_transfers[current_transfer_idx + 1].operation)
)
{
app_twi_transfer_t const * p_second_transfer =
&p_app_twi->p_current_transaction->p_transfers[current_transfer_idx + 1];
xfer_desc.p_secondary_buf = p_second_transfer->p_data;
xfer_desc.secondary_length = p_second_transfer->length;
xfer_desc.type = APP_TWI_IS_READ_OP(p_second_transfer->operation) ? NRF_DRV_TWI_XFER_TXRX :
NRF_DRV_TWI_XFER_TXTX;
flags = (p_second_transfer->flags & APP_TWI_NO_STOP) ? NRF_DRV_TWI_FLAG_TX_NO_STOP : 0;
p_app_twi->current_transfer_idx++;
}
else
{
xfer_desc.type = APP_TWI_IS_READ_OP(p_transfer->operation) ? NRF_DRV_TWI_XFER_RX :
NRF_DRV_TWI_XFER_TX;
xfer_desc.p_secondary_buf = NULL;
xfer_desc.secondary_length = 0;
flags = (p_transfer->flags & APP_TWI_NO_STOP) ? NRF_DRV_TWI_FLAG_TX_NO_STOP : 0;
}
return nrf_drv_twi_xfer(&p_app_twi->twi, &xfer_desc, flags);
}
static void signal_end_of_transaction(app_twi_t const * p_app_twi,
ret_code_t result)
{
ASSERT(p_app_twi != NULL);
if (p_app_twi->p_current_transaction->callback)
{
// [use a local variable to avoid using two volatile variables in one
// expression]
void * p_user_data = p_app_twi->p_current_transaction->p_user_data;
p_app_twi->p_current_transaction->callback(result, p_user_data);
}
}
// This function starts pending transaction if there is no current one or
// when 'switch_transaction' parameter is set to true. It is important to
// switch to new transaction without setting 'p_app_twi->p_current_transaction'
// to NULL in between, since this pointer is used to check idle status - see
// 'app_twi_is_idle()'.
static void start_pending_transaction(app_twi_t * p_app_twi,
bool switch_transaction)
{
ASSERT(p_app_twi != NULL);
for (;;)
{
bool start_transaction = false;
CRITICAL_REGION_ENTER();
if (switch_transaction || app_twi_is_idle(p_app_twi))
{
p_app_twi->p_current_transaction = queue_get(&p_app_twi->queue);
if (p_app_twi->p_current_transaction != NULL)
{
start_transaction = true;
}
}
CRITICAL_REGION_EXIT();
if (!start_transaction)
{
return;
}
else
{
ret_code_t result;
// Try to start first transfer for this new transaction.
p_app_twi->current_transfer_idx = 0;
result = start_transfer(p_app_twi);
// If it started successfully there is nothing more to do here now.
if (result == NRF_SUCCESS)
{
return;
}
// Transfer failed to start - notify user that this transaction
// cannot be started and try with next one (in next iteration of
// the loop).
signal_end_of_transaction(p_app_twi, result);
switch_transaction = true;
}
}
}
static void twi_event_handler(nrf_drv_twi_evt_t const * p_event,
void * p_context)
{
ASSERT(p_event != NULL);
app_twi_t * p_app_twi = (app_twi_t *)p_context;
ret_code_t result;
// This callback should be called only during transaction.
ASSERT(p_app_twi->p_current_transaction != NULL);
if (p_event->type == NRF_DRV_TWI_EVT_DONE)
{
result = NRF_SUCCESS;
// Transfer finished successfully. If there is another one to be
// performed in the current transaction, start it now.
// [use a local variable to avoid using two volatile variables in one
// expression]
uint8_t current_transfer_idx = p_app_twi->current_transfer_idx;
++current_transfer_idx;
if (current_transfer_idx <
p_app_twi->p_current_transaction->number_of_transfers)
{
p_app_twi->current_transfer_idx = current_transfer_idx;
result = start_transfer(p_app_twi);
if (result == NRF_SUCCESS)
{
// The current transaction goes on and we've successfully
// started its next transfer -> there is nothing more to do.
return;
}
// [if the next transfer could not be started due to some error
// we finish the transaction with this error code as the result]
}
}
else
{
result = NRF_ERROR_INTERNAL;
}
// The current transaction has been completed or interrupted by some error.
// Notify the user and start next one (if there is any).
signal_end_of_transaction(p_app_twi, result);
// [we switch transactions here ('p_app_twi->p_current_transaction' is set
// to NULL only if there is nothing more to do) in order to not generate
// spurious idle status (even for a moment)]
start_pending_transaction(p_app_twi, true);
}
ret_code_t app_twi_init(app_twi_t * p_app_twi,
nrf_drv_twi_config_t const * p_twi_config,
uint8_t queue_size,
app_twi_transaction_t const * * p_queue_buffer)
{
ASSERT(p_app_twi != NULL);
ASSERT(queue_size != 0);
ASSERT(p_queue_buffer != NULL);
ret_code_t err_code;
err_code = nrf_drv_twi_init(&p_app_twi->twi,
p_twi_config,
twi_event_handler,
p_app_twi);
VERIFY_SUCCESS(err_code);
nrf_drv_twi_enable(&p_app_twi->twi);
p_app_twi->queue.p_buffer = p_queue_buffer;
p_app_twi->queue.size = queue_size;
p_app_twi->queue.read_idx = 0;
p_app_twi->queue.write_idx = 0;
p_app_twi->internal_transaction_in_progress = false;
p_app_twi->p_current_transaction = NULL;
return NRF_SUCCESS;
}
void app_twi_uninit(app_twi_t * p_app_twi)
{
ASSERT(p_app_twi != NULL);
nrf_drv_twi_uninit(&(p_app_twi->twi));
p_app_twi->p_current_transaction = NULL;
}
ret_code_t app_twi_schedule(app_twi_t * p_app_twi,
app_twi_transaction_t const * p_transaction)
{
ASSERT(p_app_twi != NULL);
ASSERT(p_transaction != NULL);
ASSERT(p_transaction->p_transfers != NULL);
ASSERT(p_transaction->number_of_transfers != 0);
ret_code_t result = NRF_SUCCESS;
CRITICAL_REGION_ENTER();
if (!queue_put(&p_app_twi->queue, p_transaction))
{
result = NRF_ERROR_BUSY;
}
CRITICAL_REGION_EXIT();
if (result == NRF_SUCCESS)
{
// New transaction has been successfully added to queue,
// so if we are currently idle it's time to start the job.
start_pending_transaction(p_app_twi, false);
}
return result;
}
static void internal_transaction_cb(ret_code_t result, void * p_user_data)
{
app_twi_t * p_app_twi = (app_twi_t *)p_user_data;
p_app_twi->internal_transaction_result = result;
p_app_twi->internal_transaction_in_progress = false;
}
ret_code_t app_twi_perform(app_twi_t * p_app_twi,
app_twi_transfer_t const * p_transfers,
uint8_t number_of_transfers,
void (* user_function)(void))
{
ASSERT(p_app_twi != NULL);
ASSERT(p_transfers != NULL);
ASSERT(number_of_transfers != 0);
bool busy = false;
CRITICAL_REGION_ENTER();
if (p_app_twi->internal_transaction_in_progress)
{
busy = true;
}
else
{
p_app_twi->internal_transaction_in_progress = true;
}
CRITICAL_REGION_EXIT();
if (busy)
{
return NRF_ERROR_BUSY;
}
else
{
app_twi_transaction_t internal_transaction =
{
.callback = internal_transaction_cb,
.p_user_data = p_app_twi,
.p_transfers = p_transfers,
.number_of_transfers = number_of_transfers,
};
ret_code_t result = app_twi_schedule(p_app_twi, &internal_transaction);
VERIFY_SUCCESS(result);
while (p_app_twi->internal_transaction_in_progress)
{
if (user_function)
{
user_function();
}
}
return p_app_twi->internal_transaction_result;
}
}
#endif //NRF_MODULE_ENABLED(APP_TWI)

View File

@@ -0,0 +1,327 @@
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef APP_TWI_H__
#define APP_TWI_H__
#include <stdint.h>
#include "nrf_drv_twi.h"
#include "sdk_errors.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup app_twi TWI transaction manager
* @{
* @ingroup app_common
*
* @brief Module for scheduling TWI transactions.
*/
/**
* @brief Flag indicating that a given transfer should not be ended
* with a stop condition.
*
* Use this flag when a stop condition is undesirable between two transfers,
* for example, when the first transfer is a write that sets an address in the slave
* device and the second one is a read that fetches certain data using this
* address. In this case, the second transfer should follow directly after the
* first transfer, with a repeated start condition instead of a stop and then
* a new start condition.
*/
#define APP_TWI_NO_STOP 0x01
/**
* @brief Macro for creating a write transfer.
*
* @param address Slave address.
* @param[in] p_data Pointer to the data to be sent.
* @param length Number of bytes to transfer.
* @param flags Transfer flags (see @ref APP_TWI_NO_STOP).
*/
#define APP_TWI_WRITE(address, p_data, length, flags) \
APP_TWI_TRANSFER(APP_TWI_WRITE_OP(address), p_data, length, flags)
/**
* @brief Macro for creating a read transfer.
*
* @param address Slave address.
* @param[in] p_data Pointer to the buffer where received data should be placed.
* @param length Number of bytes to transfer.
* @param flags Transfer flags (see @ref APP_TWI_NO_STOP).
*/
#define APP_TWI_READ(address, p_data, length, flags) \
APP_TWI_TRANSFER(APP_TWI_READ_OP(address), p_data, length, flags)
/**
* @brief Helper macro, should not be used directly.
*/
#define APP_TWI_TRANSFER(_operation, _p_data, _length, _flags) \
{ \
.p_data = (uint8_t *)(_p_data), \
.length = _length, \
.operation = _operation, \
.flags = _flags \
}
/**
* @brief Helper macro, should not be used directly.
*/
#define APP_TWI_WRITE_OP(address) (((address) << 1) | 0)
/**
* @brief Helper macro, should not be used directly.
*/
#define APP_TWI_READ_OP(address) (((address) << 1) | 1)
/**
* @brief Helper macro, should not be used directly.
*/
#define APP_TWI_IS_READ_OP(operation) ((operation) & 1)
/**
* @brief Helper macro, should not be used directly.
*/
#define APP_TWI_OP_ADDRESS(operation) ((operation) >> 1)
/**
* @brief TWI transaction callback prototype.
*
* @param result Result of operation (NRF_SUCCESS on success,
* otherwise a relevant error code).
* @param[in] p_user_data Pointer to user data defined in transaction
* descriptor.
*/
typedef void (* app_twi_callback_t)(ret_code_t result, void * p_user_data);
/**
* @brief TWI transfer descriptor.
*/
typedef struct {
uint8_t * p_data; ///< Pointer to the buffer holding the data.
uint8_t length; ///< Number of bytes to transfer.
uint8_t operation; ///< Device address combined with transfer direction.
uint8_t flags; ///< Transfer flags (see @ref APP_TWI_NO_STOP).
} app_twi_transfer_t;
/**
* @brief TWI transaction descriptor.
*/
typedef struct {
app_twi_callback_t callback;
///< User-specified function to be called after the transaction is finished.
void * p_user_data;
///< Pointer to user data to be passed to the callback.
app_twi_transfer_t const * p_transfers;
///< Pointer to the array of transfers that make up the transaction.
uint8_t number_of_transfers;
///< Number of transfers that make up the transaction.
} app_twi_transaction_t;
/**
* @brief TWI transaction queue.
*/
typedef struct {
app_twi_transaction_t const * volatile * p_buffer;
uint8_t size;
uint8_t volatile read_idx;
uint8_t volatile write_idx;
} app_twi_queue_t;
/**
* @brief TWI transaction manager instance.
*/
typedef struct {
app_twi_queue_t queue;
///< Transaction queue.
uint8_t volatile current_transfer_idx;
///< Index of currently performed transfer (within current transaction).
bool volatile internal_transaction_in_progress;
///< Informs that an internal transaction is being performed (by app_twi_perform()).
uint8_t volatile internal_transaction_result;
///< Used to pass the result of the internal transaction realized by app_twi_perform().
app_twi_transaction_t const * volatile p_current_transaction;
///< Currently realized transaction.
nrf_drv_twi_t const twi;
///< TWI master driver instance.
} app_twi_t;
/**
* @brief Macro for creating an instance of the TWI transaction manager.
*
* @param[in] twi_idx Index of the TWI master driver instance to be utilized
* by this manager instance.
*/
#define APP_TWI_INSTANCE(twi_idx) \
{ \
.twi = NRF_DRV_TWI_INSTANCE(twi_idx) \
}
/**
* @brief Macro that simplifies the initialization of a TWI transaction manager
* instance.
*
* This macro allocates a static buffer for the transaction queue.
* Therefore, it should be used in only one place in the code for a given
* instance.
*
* @param[in] p_app_twi Pointer to the instance to be initialized.
* @param[in] p_twi_config Pointer to the TWI master driver configuration.
* @param queue_size Size of the transaction queue (maximum number
* of pending transactions).
* See @ref app_twi_init_note "this note".
* @param[out] err_code The result of the app_twi_init() function call
* is written to this parameter.
*/
#define APP_TWI_INIT(p_app_twi, p_twi_config, queue_size, err_code) \
do { \
static app_twi_transaction_t const * queue_buffer[queue_size + 1]; \
err_code = app_twi_init(p_app_twi, p_twi_config, \
queue_size, queue_buffer); \
} while (0)
/**
* @brief Function for initializing a TWI transaction manager instance.
*
* This function initializes the utilized TWI master driver instance and
* prepares the transaction queue.
*
* @anchor app_twi_init_note
* @note The queue size is the maximum number of pending transactions
* not counting the one that is currently realized. This means that
* for an empty queue with size of, for example, 4 elements, it is
* possible to schedule up to 5 transactions.
*
* @param[in] p_app_twi Pointer to the instance to be initialized.
* @param[in] p_twi_config Pointer to the TWI master driver configuration.
* @param queue_size Size of the transaction queue (maximum number
* of pending transactions).
* @param[in] p_queue_buffer Pointer to a buffer for queued transactions
* storage. Due to the queue implementation, the buffer must
* be big enough to hold queue_size + 1 entries
* (pointers to transaction descriptors).
*
* @retval NRF_SUCCESS If initialization was successful. Otherwise, the error code
* returned by the nrf_drv_twi_init() function is returned.
*/
ret_code_t app_twi_init(app_twi_t * p_app_twi,
nrf_drv_twi_config_t const * p_twi_config,
uint8_t queue_size,
app_twi_transaction_t const * * p_queue_buffer);
/**
* @brief Function for uninitializing a TWI transaction manager instance.
*
* @param[in] p_app_twi Pointer to the instance to be uninitialized.
*/
void app_twi_uninit(app_twi_t * p_app_twi);
/**
* @brief Function for scheduling a TWI transaction.
*
* The transaction is enqueued and started as soon as the TWI bus is
* available, thus when all previously scheduled transactions have been
* finished (possibly immediately).
*
* @param[in] p_app_twi Pointer to the TWI transaction manager instance.
* @param[in] p_transaction Pointer to the descriptor of the transaction to be
* scheduled.
*
* @retval NRF_SUCCESS If the transaction has been successfully scheduled.
* @retval NRF_ERROR_BUSY If the limit of pending transactions has been reached
* (the transaction queue is full).
*/
ret_code_t app_twi_schedule(app_twi_t * p_app_twi,
app_twi_transaction_t const * p_transaction);
/**
* @brief Function for scheduling a transaction and waiting until it is finished.
*
* This function schedules a transaction that consists of one or more transfers
* and waits until it is finished.
*
* @param[in] p_app_twi Pointer to the TWI transaction manager instance.
* @param[in] p_transfers Pointer to an array of transfers to be performed.
* @param number_of_transfers Number of transfers to be performed.
* @param user_function User-specified function to be called while
* waiting. NULL if such functionality
* is not needed.
*
* @retval NRF_SUCCESS If the transfers have been successfully realized.
* @retval NRF_ERROR_BUSY If some transfers are already performed (if this function
* was called from another context).
* @retval - Other error codes mean that the transaction has ended
* with the error that is specified in the error code.
*/
ret_code_t app_twi_perform(app_twi_t * p_app_twi,
app_twi_transfer_t const * p_transfers,
uint8_t number_of_transfers,
void (* user_function)(void));
/**
* @brief Function for getting the current state of a TWI transaction manager
* instance.
*
* @param[in] p_app_twi Pointer to the TWI transaction manager instance.
*
* @retval true If all scheduled transactions have been finished.
* @retval false Otherwise.
*/
__STATIC_INLINE bool app_twi_is_idle(app_twi_t * p_app_twi)
{
return (p_app_twi->p_current_transaction == NULL);
}
/**
*@}
**/
#ifdef __cplusplus
}
#endif
#endif // APP_TWI_H__