move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,435 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_QUEUE)
#include "nrf_queue.h"
#include "app_util_platform.h"
/**@brief Get next element index.
*
* @param[in] p_queue Pointer to the queue instance.
* @param[in] idx Current index.
*
* @return Next element index.
*/
__STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx)
{
ASSERT(p_queue != NULL);
return (idx < p_queue->size) ? (idx + 1) : 0;
}
/**@brief Get current queue utilization. This function assumes that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
__STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue)
{
return (p_queue->p_cb->back >= p_queue->p_cb->front) ?
(p_queue->p_cb->back - p_queue->p_cb->front) :
(p_queue->size + 1 - p_queue->p_cb->front + p_queue->p_cb->back);
}
bool nrf_queue_is_full(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return (nrf_queue_next_idx(p_queue, p_queue->p_cb->back) == p_queue->p_cb->front);
}
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
bool is_full = nrf_queue_is_full(p_queue);
if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
// Get write position.
size_t write_pos = p_queue->p_cb->back;
p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
if (is_full)
{
// Overwrite the oldest element.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Write a new element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element);
break;
case sizeof(uint16_t):
((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element);
break;
case sizeof(uint32_t):
((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element);
break;
case sizeof(uint64_t):
((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element);
break;
default:
memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size),
p_element,
p_queue->element_size);
break;
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
return status;
}
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
if (!nrf_queue_is_empty(p_queue))
{
// Get read position.
size_t read_pos = p_queue->p_cb->front;
// Update next read position.
if (!just_peek)
{
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Read element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
*((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint16_t):
*((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint32_t):
*((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint64_t):
*((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos];
break;
default:
memcpy(p_element,
(void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size),
p_queue->element_size);
break;
}
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
return status;
}
/**@brief Write elements to the queue. This function assumes that there is enough room in the queue
* to write the requested number of elements and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*/
static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count)
{
size_t prev_available = nrf_queue_available_get(p_queue);
size_t continuous = p_queue->size + 1 - p_queue->p_cb->back;
void * p_write_ptr = (void *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->back * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_write_ptr,
p_data,
element_count * p_queue->element_size);
p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size)
? (p_queue->p_cb->back + element_count)
: 0;
}
else
{
size_t first_write_length = continuous * p_queue->element_size;
memcpy(p_write_ptr,
p_data,
first_write_length);
size_t elements_left = element_count - continuous;
memcpy(p_queue->p_buffer,
(void const *)((size_t)p_data + first_write_length),
elements_left * p_queue->element_size);
p_queue->p_cb->back = elements_left;
if (prev_available < element_count)
{
// Overwrite the oldest elements.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
}
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
ASSERT(element_count <= p_queue->size);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if ((nrf_queue_available_get(p_queue) >= element_count)
|| (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
queue_write(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
return status;
}
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)
{
element_count = MIN(element_count, p_queue->size);
}
else
{
size_t available = nrf_queue_available_get(p_queue);
element_count = MIN(element_count, available);
}
queue_write(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
return element_count;
}
/**@brief Read elements from the queue. This function assumes that there are enough elements
* in the queue to read and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*/
static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count)
{
size_t continuous = (p_queue->p_cb->front <= p_queue->p_cb->back)
? p_queue->p_cb->back - p_queue->p_cb->front
: p_queue->size + 1 - p_queue->p_cb->front;
void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->front * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_data,
p_read_ptr,
element_count * p_queue->element_size);
p_queue->p_cb->front = ((p_queue->p_cb->front + element_count) <= p_queue->size)
? (p_queue->p_cb->front + element_count)
: 0;
}
else
{
size_t first_read_length = continuous * p_queue->element_size;
memcpy(p_data,
p_read_ptr,
first_read_length);
size_t elements_left = element_count - continuous;
memcpy((void *)((size_t)p_data + first_read_length),
p_queue->p_buffer,
elements_left * p_queue->element_size);
p_queue->p_cb->front = elements_left;
}
}
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if (element_count <= queue_utilization_get(p_queue))
{
queue_read(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
return status;
}
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
size_t utilization = queue_utilization_get(p_queue);
element_count = MIN(element_count, utilization);
queue_read(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
return element_count;
}
void nrf_queue_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t));
CRITICAL_REGION_EXIT();
}
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t utilization;
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
utilization = queue_utilization_get(p_queue);
CRITICAL_REGION_EXIT();
return utilization;
}
#endif // NRF_MODULE_ENABLED(NRF_QUEUE)