move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,435 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_QUEUE)
#include "nrf_queue.h"
#include "app_util_platform.h"
/**@brief Get next element index.
*
* @param[in] p_queue Pointer to the queue instance.
* @param[in] idx Current index.
*
* @return Next element index.
*/
__STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx)
{
ASSERT(p_queue != NULL);
return (idx < p_queue->size) ? (idx + 1) : 0;
}
/**@brief Get current queue utilization. This function assumes that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
__STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue)
{
return (p_queue->p_cb->back >= p_queue->p_cb->front) ?
(p_queue->p_cb->back - p_queue->p_cb->front) :
(p_queue->size + 1 - p_queue->p_cb->front + p_queue->p_cb->back);
}
bool nrf_queue_is_full(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return (nrf_queue_next_idx(p_queue, p_queue->p_cb->back) == p_queue->p_cb->front);
}
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
bool is_full = nrf_queue_is_full(p_queue);
if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
// Get write position.
size_t write_pos = p_queue->p_cb->back;
p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
if (is_full)
{
// Overwrite the oldest element.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Write a new element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element);
break;
case sizeof(uint16_t):
((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element);
break;
case sizeof(uint32_t):
((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element);
break;
case sizeof(uint64_t):
((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element);
break;
default:
memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size),
p_element,
p_queue->element_size);
break;
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
return status;
}
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
if (!nrf_queue_is_empty(p_queue))
{
// Get read position.
size_t read_pos = p_queue->p_cb->front;
// Update next read position.
if (!just_peek)
{
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Read element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
*((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint16_t):
*((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint32_t):
*((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint64_t):
*((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos];
break;
default:
memcpy(p_element,
(void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size),
p_queue->element_size);
break;
}
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
return status;
}
/**@brief Write elements to the queue. This function assumes that there is enough room in the queue
* to write the requested number of elements and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*/
static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count)
{
size_t prev_available = nrf_queue_available_get(p_queue);
size_t continuous = p_queue->size + 1 - p_queue->p_cb->back;
void * p_write_ptr = (void *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->back * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_write_ptr,
p_data,
element_count * p_queue->element_size);
p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size)
? (p_queue->p_cb->back + element_count)
: 0;
}
else
{
size_t first_write_length = continuous * p_queue->element_size;
memcpy(p_write_ptr,
p_data,
first_write_length);
size_t elements_left = element_count - continuous;
memcpy(p_queue->p_buffer,
(void const *)((size_t)p_data + first_write_length),
elements_left * p_queue->element_size);
p_queue->p_cb->back = elements_left;
if (prev_available < element_count)
{
// Overwrite the oldest elements.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
}
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
ASSERT(element_count <= p_queue->size);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if ((nrf_queue_available_get(p_queue) >= element_count)
|| (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
queue_write(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
return status;
}
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)
{
element_count = MIN(element_count, p_queue->size);
}
else
{
size_t available = nrf_queue_available_get(p_queue);
element_count = MIN(element_count, available);
}
queue_write(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
return element_count;
}
/**@brief Read elements from the queue. This function assumes that there are enough elements
* in the queue to read and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*/
static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count)
{
size_t continuous = (p_queue->p_cb->front <= p_queue->p_cb->back)
? p_queue->p_cb->back - p_queue->p_cb->front
: p_queue->size + 1 - p_queue->p_cb->front;
void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->front * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_data,
p_read_ptr,
element_count * p_queue->element_size);
p_queue->p_cb->front = ((p_queue->p_cb->front + element_count) <= p_queue->size)
? (p_queue->p_cb->front + element_count)
: 0;
}
else
{
size_t first_read_length = continuous * p_queue->element_size;
memcpy(p_data,
p_read_ptr,
first_read_length);
size_t elements_left = element_count - continuous;
memcpy((void *)((size_t)p_data + first_read_length),
p_queue->p_buffer,
elements_left * p_queue->element_size);
p_queue->p_cb->front = elements_left;
}
}
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if (element_count <= queue_utilization_get(p_queue))
{
queue_read(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
return status;
}
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
size_t utilization = queue_utilization_get(p_queue);
element_count = MIN(element_count, utilization);
queue_read(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
return element_count;
}
void nrf_queue_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t));
CRITICAL_REGION_EXIT();
}
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t utilization;
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
utilization = queue_utilization_get(p_queue);
CRITICAL_REGION_EXIT();
return utilization;
}
#endif // NRF_MODULE_ENABLED(NRF_QUEUE)

View File

@@ -0,0 +1,402 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @defgroup nrf_queue Queue module
* @{
* @ingroup app_common
* @brief Functions that handle the queue instances.
*/
#ifndef NRF_QUEUE_H__
#define NRF_QUEUE_H__
#include <stdint.h>
#include <stdint.h>
#include <string.h>
#include "nrf_assert.h"
#include "sdk_errors.h"
#include "app_util.h"
#ifdef __cplusplus
extern "C" {
#endif
/**@brief Queue control block. */
typedef struct
{
size_t front; //!< Queue front index.
size_t back; //!< Queue back index.
size_t max_utilization; //!< Maximum utilization of the queue.
} nrf_queue_cb_t;
/**@brief Supported queue modes. */
typedef enum
{
NRF_QUEUE_MODE_OVERFLOW, //!< If the queue is full, new element will not be accepted.
NRF_QUEUE_MODE_NO_OVERFLOW, //!< If the queue is full, new element will overwrite the oldest.
} nrf_queue_mode_t;
/**@brief Instance of the queue. */
typedef struct
{
nrf_queue_cb_t * p_cb; //!< Pointer to the instance control block.
void * p_buffer; //!< Pointer to the memory that is used as storage.
size_t size; //!< Size of the queue.
size_t element_size; //!< Size of one element.
nrf_queue_mode_t mode; //!< Mode of the queue.
} nrf_queue_t;
/**@brief Create a queue instance.
*
* @note This macro reserves memory for the given queue instance.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _size Size of the queue.
* @param[in] _mode Mode of the queue.
*/
#define NRF_QUEUE_DEF(_type, _name, _size, _mode) \
static _type _name##_nrf_queue_buffer[(_size) + 1]; \
static nrf_queue_cb_t _name##_nrf_queue_cb; \
static const nrf_queue_t _name = \
{ \
.p_cb = &_name##_nrf_queue_cb, \
.p_buffer = _name##_nrf_queue_buffer, \
.size = (_size), \
.element_size = sizeof(_type), \
.mode = _mode, \
}
/**@brief Declare a queue interface.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
*/
#define NRF_QUEUE_INTERFACE_DEC(_type, _name) \
ret_code_t _name##_push(_type const * p_element); \
ret_code_t _name##_pop(_type * p_element); \
ret_code_t _name##_peek(_type * p_element); \
ret_code_t _name##_write(_type const * p_data, \
size_t element_count); \
ret_code_t _name##_read(_type * p_data, \
size_t element_count); \
size_t _name##_out(_type * p_data, \
size_t element_count); \
size_t _name##_in(_type * p_data, \
size_t element_count); \
bool _name##_is_full(void); \
bool _name##_is_empty(void); \
size_t _name##_utilization_get(void); \
size_t _name##_available_get(void); \
size_t _name##_max_utilization_get(void); \
void _name##_reset(void)
/**@brief Define a custom queue interface.
*
* @param[in] _attr Function attribute that will be added to the queue function definition.
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _p_queue Queue instance.
*/
#define NRF_QUEUE_INTERFACE_CUSTOM_DEF(_attr, _type, _name, _p_queue) \
_attr ret_code_t _name##_push(_type const * p_element) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_push((_p_queue), p_element); \
} \
_attr ret_code_t _name##_pop(_type * p_element) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_pop((_p_queue), p_element); \
} \
_attr ret_code_t _name##_peek(_type * p_element) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_peek((_p_queue), p_element); \
} \
ret_code_t _name##_write(_type const * p_data, \
size_t element_count) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_write((_p_queue), p_data, element_count); \
} \
ret_code_t _name##_read(_type * p_data, \
size_t element_count) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_read((_p_queue), p_data, element_count); \
} \
size_t _name##_in(_type * p_data, \
size_t element_count) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_in((_p_queue), p_data, element_count); \
} \
size_t _name##_out(_type * p_data, \
size_t element_count) \
{ \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
return nrf_queue_out((_p_queue), p_data, element_count); \
} \
bool _name##_is_full(void) \
{ \
ASSERT((_p_queue) != NULL); \
return nrf_queue_is_full(_p_queue); \
} \
bool _name##_is_empty(void) \
{ \
ASSERT((_p_queue) != NULL); \
return nrf_queue_is_empty(_p_queue); \
} \
size_t _name##_utilization_get(void) \
{ \
ASSERT((_p_queue) != NULL); \
return nrf_queue_utilization_get(_p_queue); \
} \
size_t _name##_available_get(void) \
{ \
ASSERT((_p_queue) != NULL); \
return nrf_queue_available_get(_p_queue); \
} \
size_t _name##_max_utilization_get(void) \
{ \
ASSERT((_p_queue) != NULL); \
return nrf_queue_max_utilization_get(_p_queue); \
} \
void _name##_reset(void) \
{ \
ASSERT((_p_queue) != NULL); \
nrf_queue_reset(_p_queue); \
}
/**@brief Define a queue interface.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _p_queue Queue instance.
*/
#define NRF_QUEUE_INTERFACE_DEF(_type, _name, _p_queue) \
NRF_QUEUE_INTERFACE_CUSTOM_DEF(/* empty */, _type, _name, _p_queue)
/**@brief Define a local queue interface.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _p_queue Queue instance.
*/
#define NRF_QUEUE_INTERFACE_LOCAL_DEF(_type, _name, _p_queue) \
NRF_QUEUE_INTERFACE_CUSTOM_DEF(static, _type, _name, _p_queue)
/**@brief Function for pushing an element to the end of queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_element Pointer to the element that will be stored in the queue.
*
* @return NRF_SUCCESS If an element has been successfully added.
* @return NRF_ERROR_NO_MEM If the queue is full (only in @ref NRF_QUEUE_MODE_NO_OVERFLOW).
*/
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element);
/**@brief Generic pop implementation.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_element Pointer where the element will be copied.
* @param[out] just_peek If true, the returned element will not be removed from queue.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek);
/**@brief Pop element from the front of the queue.
*
* @param[in] _p_queue Pointer to the nrf_queue_t instance.
* @param[out] _p_element Pointer where the element will be copied.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
#define nrf_queue_pop(_p_queue, _p_element) nrf_queue_generic_pop((_p_queue), (_p_element), false)
/**@brief Peek element from the front of the queue.
*
* @param[in] _p_queue Pointer to the nrf_queue_t instance.
* @param[out] _p_element Pointer where the element will be copied.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
#define nrf_queue_peek(_p_queue, _p_element) nrf_queue_generic_pop((_p_queue), (_p_element), true)
/**@brief Function for writing elements to the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*
* @return NRF_SUCCESS If an element was written.
* @return NRF_ERROR_NO_MEM There is not enough space in the queue. No element was written.
*/
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count);
/**@brief Function for writing a portion of elements to the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*
* @return The number of added elements.
*/
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count);
/**@brief Function for reading elements from the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND There is not enough elements in the queue.
*/
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count);
/**@brief Function for reading a portion of elements from the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*
* @return The number of read elements.
*/
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count);
/**@brief Function for checking if the queue is full.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return True if the queue is full.
*/
bool nrf_queue_is_full(nrf_queue_t const * p_queue);
/**@brief Function for checking if the queue is empty.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return True if the queue is empty.
*/
__STATIC_INLINE bool nrf_queue_is_empty(nrf_queue_t const * p_queue);
/**@brief Function for getting the current queue utilization.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue);
/**@brief Function for getting the size of available space.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Size of available space.
*/
__STATIC_INLINE size_t nrf_queue_available_get(nrf_queue_t const * p_queue);
/**@brief Function for getting the maximal queue utilization.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Maximal queue utilization.
*/
__STATIC_INLINE size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue);
/**@brief Function for resetting the queue state.
*
* @param[in] p_queue Pointer to the queue instance.
*/
void nrf_queue_reset(nrf_queue_t const * p_queue);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE bool nrf_queue_is_empty(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return (p_queue->p_cb->front == p_queue->p_cb->back);
}
__STATIC_INLINE size_t nrf_queue_available_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->size - nrf_queue_utilization_get(p_queue);
}
__STATIC_INLINE size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->p_cb->max_utilization;
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
#ifdef __cplusplus
}
#endif
#endif // NRF_QUEUE_H__
/** @} */