move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,683 @@
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(SPI)
#define ENABLED_SPI_COUNT (SPI0_ENABLED+SPI1_ENABLED+SPI2_ENABLED)
#if ENABLED_SPI_COUNT
#include "nrf_drv_spi.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME "SPI"
#if SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL SPI_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR SPI_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR
#else //SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //SPI_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#ifndef SPIM_PRESENT
// Make sure SPIx_USE_EASY_DMA is 0 for nRF51 (if a common
// "nrf_drv_config.h" file is provided for nRF51 and nRF52).
#undef SPI0_USE_EASY_DMA
#define SPI0_USE_EASY_DMA 0
#undef SPI1_USE_EASY_DMA
#define SPI1_USE_EASY_DMA 0
#undef SPI2_USE_EASY_DMA
#define SPI2_USE_EASY_DMA 0
#endif
#ifndef SPI0_USE_EASY_DMA
#define SPI0_USE_EASY_DMA 0
#endif
#ifndef SPI1_USE_EASY_DMA
#define SPI1_USE_EASY_DMA 0
#endif
#ifndef SPI2_USE_EASY_DMA
#define SPI2_USE_EASY_DMA 0
#endif
// This set of macros makes it possible to exclude parts of code when one type
// of supported peripherals is not used.
#if ((NRF_MODULE_ENABLED(SPI0) && SPI0_USE_EASY_DMA) || \
(NRF_MODULE_ENABLED(SPI1) && SPI1_USE_EASY_DMA) || \
(NRF_MODULE_ENABLED(SPI2) && SPI2_USE_EASY_DMA))
#define SPIM_IN_USE
#endif
#if ((NRF_MODULE_ENABLED(SPI0) && !SPI0_USE_EASY_DMA) || \
(NRF_MODULE_ENABLED(SPI1) && !SPI1_USE_EASY_DMA) || \
(NRF_MODULE_ENABLED(SPI2) && !SPI2_USE_EASY_DMA))
#define SPI_IN_USE
#endif
#if defined(SPIM_IN_USE) && defined(SPI_IN_USE)
// SPIM and SPI combined
#define CODE_FOR_SPIM(code) if (p_instance->use_easy_dma) { code }
#define CODE_FOR_SPI(code) else { code }
#elif defined(SPIM_IN_USE) && !defined(SPI_IN_USE)
// SPIM only
#define CODE_FOR_SPIM(code) { code }
#define CODE_FOR_SPI(code)
#elif !defined(SPIM_IN_USE) && defined(SPI_IN_USE)
// SPI only
#define CODE_FOR_SPIM(code)
#define CODE_FOR_SPI(code) { code }
#else
#error "Wrong configuration."
#endif
#ifdef SPIM_IN_USE
#define END_INT_MASK NRF_SPIM_INT_END_MASK
#endif
// Control block - driver instance local data.
typedef struct
{
nrf_drv_spi_handler_t handler;
nrf_drv_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy.
nrf_drv_state_t state;
volatile bool transfer_in_progress;
// [no need for 'volatile' attribute for the following members, as they
// are not concurrently used in IRQ handlers and main line code]
uint8_t ss_pin;
uint8_t orc;
uint8_t bytes_transferred;
bool tx_done : 1;
bool rx_done : 1;
} spi_control_block_t;
static spi_control_block_t m_cb[ENABLED_SPI_COUNT];
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
#define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n
#define IRQ_HANDLER(n) static void IRQ_HANDLER_NAME(n)(void)
#if NRF_MODULE_ENABLED(SPI0)
IRQ_HANDLER(0);
#endif
#if NRF_MODULE_ENABLED(SPI1)
IRQ_HANDLER(1);
#endif
#if NRF_MODULE_ENABLED(SPI2)
IRQ_HANDLER(2);
#endif
static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPI_COUNT] = {
#if NRF_MODULE_ENABLED(SPI0)
IRQ_HANDLER_NAME(0),
#endif
#if NRF_MODULE_ENABLED(SPI1)
IRQ_HANDLER_NAME(1),
#endif
#if NRF_MODULE_ENABLED(SPI2)
IRQ_HANDLER_NAME(2),
#endif
};
#else
#define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void)
#endif // NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance,
nrf_drv_spi_config_t const * p_config,
nrf_drv_spi_handler_t handler)
{
ASSERT(p_config);
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ret_code_t err_code;
if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
if (nrf_drv_common_per_res_acquire(p_instance->p_registers,
m_irq_handlers[p_instance->drv_inst_idx]) != NRF_SUCCESS)
{
err_code = NRF_ERROR_BUSY;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
#endif
p_cb->handler = handler;
uint32_t mosi_pin;
uint32_t miso_pin;
// Configure pins used by the peripheral:
// - SCK - output with initial value corresponding with the SPI mode used:
// 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
// according to the reference manual guidelines this pin and its input
// buffer must always be connected for the SPI to work.
if (p_config->mode <= NRF_DRV_SPI_MODE_1)
{
nrf_gpio_pin_clear(p_config->sck_pin);
}
else
{
nrf_gpio_pin_set(p_config->sck_pin);
}
NRF_GPIO->PIN_CNF[p_config->sck_pin] =
(GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos)
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
| (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
| (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos);
// - MOSI (optional) - output with initial value 0,
if (p_config->mosi_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
mosi_pin = p_config->mosi_pin;
nrf_gpio_pin_clear(mosi_pin);
nrf_gpio_cfg_output(mosi_pin);
}
else
{
mosi_pin = NRF_SPI_PIN_NOT_CONNECTED;
}
// - MISO (optional) - input,
if (p_config->miso_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
miso_pin = p_config->miso_pin;
nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL);
}
else
{
miso_pin = NRF_SPI_PIN_NOT_CONNECTED;
}
// - Slave Select (optional) - output with initial value 1 (inactive).
if (p_config->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_config->ss_pin);
nrf_gpio_cfg_output(p_config->ss_pin);
}
m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;
CODE_FOR_SPIM
(
NRF_SPIM_Type * p_spim = p_instance->p_registers;
nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin);
nrf_spim_frequency_set(p_spim,
(nrf_spim_frequency_t)p_config->frequency);
nrf_spim_configure(p_spim,
(nrf_spim_mode_t)p_config->mode,
(nrf_spim_bit_order_t)p_config->bit_order);
nrf_spim_orc_set(p_spim, p_config->orc);
if (p_cb->handler)
{
nrf_spim_int_enable(p_spim, END_INT_MASK);
}
nrf_spim_enable(p_spim);
)
CODE_FOR_SPI
(
NRF_SPI_Type * p_spi = p_instance->p_registers;
nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
nrf_spi_frequency_set(p_spi,
(nrf_spi_frequency_t)p_config->frequency);
nrf_spi_configure(p_spi,
(nrf_spi_mode_t)p_config->mode,
(nrf_spi_bit_order_t)p_config->bit_order);
m_cb[p_instance->drv_inst_idx].orc = p_config->orc;
if (p_cb->handler)
{
nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
}
nrf_spi_enable(p_spi);
)
if (p_cb->handler)
{
nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);
}
p_cb->transfer_in_progress = false;
p_cb->state = NRF_DRV_STATE_INITIALIZED;
NRF_LOG_INFO("Init\r\n");
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance)
{
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
if (p_cb->handler)
{
nrf_drv_common_irq_disable(p_instance->irq);
}
#define DISABLE_ALL 0xFFFFFFFF
CODE_FOR_SPIM
(
NRF_SPIM_Type * p_spim = p_instance->p_registers;
if (p_cb->handler)
{
nrf_spim_int_disable(p_spim, DISABLE_ALL);
if (p_cb->transfer_in_progress)
{
// Ensure that SPI is not performing any transfer.
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP);
while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) {}
p_cb->transfer_in_progress = false;
}
}
nrf_spim_disable(p_spim);
)
CODE_FOR_SPI
(
NRF_SPI_Type * p_spi = p_instance->p_registers;
if (p_cb->handler)
{
nrf_spi_int_disable(p_spi, DISABLE_ALL);
}
nrf_spi_disable(p_spi);
)
#undef DISABLE_ALL
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
nrf_drv_common_per_res_release(p_instance->p_registers);
#endif
p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
}
ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance,
uint8_t const * p_tx_buffer,
uint8_t tx_buffer_length,
uint8_t * p_rx_buffer,
uint8_t rx_buffer_length)
{
nrf_drv_spi_xfer_desc_t xfer_desc;
xfer_desc.p_tx_buffer = p_tx_buffer;
xfer_desc.p_rx_buffer = p_rx_buffer;
xfer_desc.tx_length = tx_buffer_length;
xfer_desc.rx_length = rx_buffer_length;
NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length);
NRF_LOG_DEBUG("Tx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_tx_buffer, tx_buffer_length * sizeof(p_tx_buffer));
return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0);
}
static void finish_transfer(spi_control_block_t * p_cb)
{
// If Slave Select signal is used, this is the time to deactivate it.
if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
// By clearing this flag before calling the handler we allow subsequent
// transfers to be started directly from the handler function.
p_cb->transfer_in_progress = false;
p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE;
NRF_LOG_INFO("Transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length);
NRF_LOG_DEBUG("Rx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer,
p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer));
p_cb->handler(&p_cb->evt);
}
#ifdef SPI_IN_USE
// This function is called from IRQ handler or, in blocking mode, directly
// from the 'nrf_drv_spi_transfer' function.
// It returns true as long as the transfer should be continued, otherwise (when
// there is nothing more to send/receive) it returns false.
static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
// Read the data byte received in this transfer and store it in RX buffer,
// if needed.
volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length)
{
p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data;
}
++p_cb->bytes_transferred;
// Check if there are more bytes to send or receive and write proper data
// byte (next one from TX buffer or over-run character) to the TXD register
// when needed.
// NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
// buffers, because we take advantage of double buffering of TXD
// register (so in effect one byte is still being transmitted now);
// see how the transfer is started in the 'nrf_drv_spi_transfer'
// function.
uint16_t bytes_used = p_cb->bytes_transferred + 1;
if (bytes_used < p_cb->evt.data.done.tx_length)
{
nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]);
return true;
}
else if (bytes_used < p_cb->evt.data.done.rx_length)
{
nrf_spi_txd_set(p_spi, p_cb->orc);
return true;
}
return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length ||
p_cb->bytes_transferred < p_cb->evt.data.done.rx_length);
}
static void spi_xfer(NRF_SPI_Type * p_spi,
spi_control_block_t * p_cb,
nrf_drv_spi_xfer_desc_t const * p_xfer_desc)
{
p_cb->bytes_transferred = 0;
nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
// Start the transfer by writing some byte to the TXD register;
// if TX buffer is not empty, take the first byte from this buffer,
// otherwise - use over-run character.
nrf_spi_txd_set(p_spi,
(p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc));
// TXD register is double buffered, so next byte to be transmitted can
// be written immediately, if needed, i.e. if TX or RX transfer is to
// be more that 1 byte long. Again - if there is something more in TX
// buffer send it, otherwise use over-run character.
if (p_xfer_desc->tx_length > 1)
{
nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
}
else if (p_xfer_desc->rx_length > 1)
{
nrf_spi_txd_set(p_spi, p_cb->orc);
}
// For blocking mode (user handler not provided) wait here for READY
// events (indicating that the byte from TXD register was transmitted
// and a new incoming byte was moved to the RXD register) and continue
// transaction until all requested bytes are transferred.
// In non-blocking mode - IRQ service routine will do this stuff.
if (p_cb->handler)
{
nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
}
else
{
do {
while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");
} while (transfer_byte(p_spi, p_cb));
if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
}
}
#endif // SPI_IN_USE
#ifdef SPIM_IN_USE
__STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable)
{
if (!enable)
{
nrf_spim_int_disable(p_spim, END_INT_MASK);
}
else
{
nrf_spim_int_enable(p_spim, END_INT_MASK);
}
}
__STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags)
{
if (NRF_DRV_SPI_FLAG_TX_POSTINC & flags)
{
nrf_spim_tx_list_enable(p_spim);
}
else
{
nrf_spim_tx_list_disable(p_spim);
}
if (NRF_DRV_SPI_FLAG_RX_POSTINC & flags)
{
nrf_spim_rx_list_enable(p_spim);
}
else
{
nrf_spim_rx_list_disable(p_spim);
}
}
static ret_code_t spim_xfer(NRF_SPIM_Type * p_spim,
spi_control_block_t * p_cb,
nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
uint32_t flags)
{
ret_code_t err_code;
// EasyDMA requires that transfer buffers are placed in Data RAM region;
// signal error if they are not.
if ((p_xfer_desc->p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_tx_buffer)) ||
(p_xfer_desc->p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_rx_buffer)))
{
p_cb->transfer_in_progress = false;
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length);
nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length);
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
spim_list_enable_handle(p_spim, flags);
if (!(flags & NRF_DRV_SPI_FLAG_HOLD_XFER))
{
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
}
if (!p_cb->handler)
{
while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){}
if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
}
else
{
spim_int_enable(p_spim, !(flags & NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER));
}
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
#endif
ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t const * const p_instance,
nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
uint32_t flags)
{
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
ret_code_t err_code = NRF_SUCCESS;
if (p_cb->transfer_in_progress)
{
err_code = NRF_ERROR_BUSY;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
else
{
if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER | NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)))
{
p_cb->transfer_in_progress = true;
}
}
p_cb->evt.data.done = *p_xfer_desc;
p_cb->tx_done = false;
p_cb->rx_done = false;
if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_clear(p_cb->ss_pin);
}
CODE_FOR_SPIM
(
return spim_xfer(p_instance->p_registers, p_cb, p_xfer_desc, flags);
)
CODE_FOR_SPI
(
if (flags)
{
p_cb->transfer_in_progress = false;
err_code = NRF_ERROR_NOT_SUPPORTED;
}
else
{
spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc);
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
)
}
#ifdef SPIM_IN_USE
static void irq_handler_spim(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb)
{
ASSERT(p_cb->handler);
if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END))
{
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
NRF_LOG_DEBUG("SPIM: Event: NRF_SPIM_EVENT_END.\r\n");
finish_transfer(p_cb);
}
}
uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance)
{
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START);
}
uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance)
{
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END);
}
#endif // SPIM_IN_USE
#ifdef SPI_IN_USE
static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
ASSERT(p_cb->handler);
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");
if (!transfer_byte(p_spi, p_cb))
{
finish_transfer(p_cb);
}
}
#endif // SPI_IN_USE
#if NRF_MODULE_ENABLED(SPI0)
IRQ_HANDLER(0)
{
spi_control_block_t * p_cb = &m_cb[SPI0_INSTANCE_INDEX];
#if SPI0_USE_EASY_DMA
irq_handler_spim(NRF_SPIM0, p_cb);
#else
irq_handler_spi(NRF_SPI0, p_cb);
#endif
}
#endif // NRF_MODULE_ENABLED(SPI0)
#if NRF_MODULE_ENABLED(SPI1)
IRQ_HANDLER(1)
{
spi_control_block_t * p_cb = &m_cb[SPI1_INSTANCE_INDEX];
#if SPI1_USE_EASY_DMA
irq_handler_spim(NRF_SPIM1, p_cb);
#else
irq_handler_spi(NRF_SPI1, p_cb);
#endif
}
#endif // NRF_MODULE_ENABLED(SPI1)
#if NRF_MODULE_ENABLED(SPI2)
IRQ_HANDLER(2)
{
spi_control_block_t * p_cb = &m_cb[SPI2_INSTANCE_INDEX];
#if SPI2_USE_EASY_DMA
irq_handler_spim(NRF_SPIM2, p_cb);
#else
irq_handler_spi(NRF_SPI2, p_cb);
#endif
}
#endif // NRF_MODULE_ENABLED(SPI2)
#endif // ENABLED_SPI_COUNT
#endif // NRF_MODULE_ENABLED(SPI)

View File

@@ -0,0 +1,408 @@
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**@file
* @addtogroup nrf_spi Serial peripheral interface (SPI/SPIM)
* @ingroup nrf_drivers
* @brief Serial peripheral interface (SPI/SPIM) APIs.
*
*/
#ifndef NRF_DRV_SPI_H__
#define NRF_DRV_SPI_H__
#include "nordic_common.h"
#include "sdk_config.h"
#include "nrf_peripherals.h"
#include "nrf_spi.h"
#ifdef SPIM_PRESENT
#include "nrf_spim.h"
#endif
#include "sdk_errors.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SPIM_PRESENT)
#define NRF_DRV_SPI_PERIPHERAL(id) \
(CONCAT_3(SPI, id, _USE_EASY_DMA) == 1 ? \
(void *)CONCAT_2(NRF_SPIM, id) \
: (void *)CONCAT_2(NRF_SPI, id))
#define SPI2_IRQ SPIM2_SPIS2_SPI2_IRQn
#define SPI2_IRQ_HANDLER SPIM2_SPIS2_SPI2_IRQHandler
#else
#define NRF_DRV_SPI_PERIPHERAL(id) (void *)CONCAT_2(NRF_SPI, id)
#endif
#define SPI0_IRQ SPI0_TWI0_IRQn
#define SPI0_IRQ_HANDLER SPI0_TWI0_IRQHandler
#define SPI1_IRQ SPI1_TWI1_IRQn
#define SPI1_IRQ_HANDLER SPI1_TWI1_IRQHandler
/**
* @defgroup nrf_drv_spi SPI master driver
* @{
* @ingroup nrf_spi
*
* @brief Multi-instance SPI master driver.
*/
/**
* @brief SPI master driver instance data structure.
*/
typedef struct
{
void * p_registers; ///< Pointer to the structure with SPI/SPIM peripheral instance registers.
IRQn_Type irq; ///< SPI/SPIM peripheral instance IRQ number.
uint8_t drv_inst_idx; ///< Driver instance index.
bool use_easy_dma; ///< True if the peripheral with EasyDMA (SPIM) shall be used.
} nrf_drv_spi_t;
#define SPI0_INSTANCE_INDEX 0
#define SPI1_INSTANCE_INDEX SPI0_INSTANCE_INDEX+SPI0_ENABLED
#define SPI2_INSTANCE_INDEX SPI1_INSTANCE_INDEX+SPI1_ENABLED
/**
* @brief Macro for creating an SPI master driver instance.
*/
#define NRF_DRV_SPI_INSTANCE(id) \
{ \
.p_registers = NRF_DRV_SPI_PERIPHERAL(id), \
.irq = CONCAT_3(SPI, id, _IRQ), \
.drv_inst_idx = CONCAT_3(SPI, id, _INSTANCE_INDEX), \
.use_easy_dma = CONCAT_3(SPI, id, _USE_EASY_DMA) \
}
/**
* @brief This value can be provided instead of a pin number for signals MOSI,
* MISO, and Slave Select to specify that the given signal is not used and
* therefore does not need to be connected to a pin.
*/
#define NRF_DRV_SPI_PIN_NOT_USED 0xFF
/**
* @brief SPI data rates.
*/
typedef enum
{
NRF_DRV_SPI_FREQ_125K = NRF_SPI_FREQ_125K, ///< 125 kbps.
NRF_DRV_SPI_FREQ_250K = NRF_SPI_FREQ_250K, ///< 250 kbps.
NRF_DRV_SPI_FREQ_500K = NRF_SPI_FREQ_500K, ///< 500 kbps.
NRF_DRV_SPI_FREQ_1M = NRF_SPI_FREQ_1M, ///< 1 Mbps.
NRF_DRV_SPI_FREQ_2M = NRF_SPI_FREQ_2M, ///< 2 Mbps.
NRF_DRV_SPI_FREQ_4M = NRF_SPI_FREQ_4M, ///< 4 Mbps.
NRF_DRV_SPI_FREQ_8M = NRF_SPI_FREQ_8M ///< 8 Mbps.
} nrf_drv_spi_frequency_t;
/**
* @brief SPI modes.
*/
typedef enum
{
NRF_DRV_SPI_MODE_0 = NRF_SPI_MODE_0, ///< SCK active high, sample on leading edge of clock.
NRF_DRV_SPI_MODE_1 = NRF_SPI_MODE_1, ///< SCK active high, sample on trailing edge of clock.
NRF_DRV_SPI_MODE_2 = NRF_SPI_MODE_2, ///< SCK active low, sample on leading edge of clock.
NRF_DRV_SPI_MODE_3 = NRF_SPI_MODE_3 ///< SCK active low, sample on trailing edge of clock.
} nrf_drv_spi_mode_t;
/**
* @brief SPI bit orders.
*/
typedef enum
{
NRF_DRV_SPI_BIT_ORDER_MSB_FIRST = NRF_SPI_BIT_ORDER_MSB_FIRST, ///< Most significant bit shifted out first.
NRF_DRV_SPI_BIT_ORDER_LSB_FIRST = NRF_SPI_BIT_ORDER_LSB_FIRST ///< Least significant bit shifted out first.
} nrf_drv_spi_bit_order_t;
/**
* @brief SPI master driver instance configuration structure.
*/
typedef struct
{
uint8_t sck_pin; ///< SCK pin number.
uint8_t mosi_pin; ///< MOSI pin number (optional).
/**< Set to @ref NRF_DRV_SPI_PIN_NOT_USED
* if this signal is not needed. */
uint8_t miso_pin; ///< MISO pin number (optional).
/**< Set to @ref NRF_DRV_SPI_PIN_NOT_USED
* if this signal is not needed. */
uint8_t ss_pin; ///< Slave Select pin number (optional).
/**< Set to @ref NRF_DRV_SPI_PIN_NOT_USED
* if this signal is not needed. The driver
* supports only active low for this signal.
* If the signal should be active high,
* it must be controlled externally. */
uint8_t irq_priority; ///< Interrupt priority.
uint8_t orc; ///< Over-run character.
/**< This character is used when all bytes from the TX buffer are sent,
but the transfer continues due to RX. */
nrf_drv_spi_frequency_t frequency; ///< SPI frequency.
nrf_drv_spi_mode_t mode; ///< SPI mode.
nrf_drv_spi_bit_order_t bit_order; ///< SPI bit order.
} nrf_drv_spi_config_t;
/**
* @brief SPI master instance default configuration.
*/
#define NRF_DRV_SPI_DEFAULT_CONFIG \
{ \
.sck_pin = NRF_DRV_SPI_PIN_NOT_USED, \
.mosi_pin = NRF_DRV_SPI_PIN_NOT_USED, \
.miso_pin = NRF_DRV_SPI_PIN_NOT_USED, \
.ss_pin = NRF_DRV_SPI_PIN_NOT_USED, \
.irq_priority = SPI_DEFAULT_CONFIG_IRQ_PRIORITY, \
.orc = 0xFF, \
.frequency = NRF_DRV_SPI_FREQ_4M, \
.mode = NRF_DRV_SPI_MODE_0, \
.bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST, \
}
#define NRF_DRV_SPI_FLAG_TX_POSTINC (1UL << 0) /**< TX buffer address incremented after transfer. */
#define NRF_DRV_SPI_FLAG_RX_POSTINC (1UL << 1) /**< RX buffer address incremented after transfer. */
#define NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER (1UL << 2) /**< Interrupt after each transfer is suppressed, and the event handler is not called. */
#define NRF_DRV_SPI_FLAG_HOLD_XFER (1UL << 3) /**< Set up the transfer but do not start it. */
#define NRF_DRV_SPI_FLAG_REPEATED_XFER (1UL << 4) /**< Flag indicating that the transfer will be executed multiple times. */
/**
* @brief Single transfer descriptor structure.
*/
typedef struct
{
uint8_t const * p_tx_buffer; ///< Pointer to TX buffer.
uint8_t tx_length; ///< TX buffer length.
uint8_t * p_rx_buffer; ///< Pointer to RX buffer.
uint8_t rx_length; ///< RX buffer length.
}nrf_drv_spi_xfer_desc_t;
/**
* @brief Macro for setting up single transfer descriptor.
*
* This macro is for internal use only.
*/
#define NRF_DRV_SPI_SINGLE_XFER(p_tx, tx_len, p_rx, rx_len) \
{ \
.p_tx_buffer = (uint8_t const *)(p_tx), \
.tx_length = (tx_len), \
.p_rx_buffer = (p_rx), \
.rx_length = (rx_len), \
}
/**
* @brief Macro for setting duplex TX RX transfer.
*/
#define NRF_DRV_SPI_XFER_TRX(p_tx_buf, tx_length, p_rx_buf, rx_length) \
NRF_DRV_SPI_SINGLE_XFER(p_tx_buf, tx_length, p_rx_buf, rx_length)
/**
* @brief Macro for setting TX transfer.
*/
#define NRF_DRV_SPI_XFER_TX(p_buf, length) \
NRF_DRV_SPI_SINGLE_XFER(p_buf, length, NULL, 0)
/**
* @brief Macro for setting RX transfer.
*/
#define NRF_DRV_SPI_XFER_RX(p_buf, length) \
NRF_DRV_SPI_SINGLE_XFER(NULL, 0, p_buf, length)
/**
* @brief SPI master driver event types, passed to the handler routine provided
* during initialization.
*/
typedef enum
{
NRF_DRV_SPI_EVENT_DONE, ///< Transfer done.
} nrf_drv_spi_evt_type_t;
typedef struct
{
nrf_drv_spi_evt_type_t type; ///< Event type.
union
{
nrf_drv_spi_xfer_desc_t done; ///< Event data for DONE event.
} data;
} nrf_drv_spi_evt_t;
/**
* @brief SPI master driver event handler type.
*/
typedef void (*nrf_drv_spi_handler_t)(nrf_drv_spi_evt_t const * p_event);
/**
* @brief Function for initializing the SPI master driver instance.
*
* This function configures and enables the specified peripheral.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_config Pointer to the structure with the initial configuration.
* If NULL, the default configuration is used.
* @param handler Event handler provided by the user. If NULL, transfers
* will be performed in blocking mode.
*
* @retval NRF_SUCCESS If initialization was successful.
* @retval NRF_ERROR_INVALID_STATE If the driver was already initialized.
* @retval NRF_ERROR_BUSY If some other peripheral with the same
* instance ID is already in use. This is
* possible only if PERIPHERAL_RESOURCE_SHARING_ENABLED
* is set to a value other than zero.
*/
ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance,
nrf_drv_spi_config_t const * p_config,
nrf_drv_spi_handler_t handler);
/**
* @brief Function for uninitializing the SPI master driver instance.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance);
/**
* @brief Function for starting the SPI data transfer.
*
* If an event handler was provided in the @ref nrf_drv_spi_init call, this function
* returns immediately and the handler is called when the transfer is done.
* Otherwise, the transfer is performed in blocking mode, which means that this function
* returns when the transfer is finished.
*
* @note Peripherals using EasyDMA (for example, SPIM) require the transfer buffers
* to be placed in the Data RAM region. If they are not and an SPIM instance is
* used, this function will fail with the error code NRF_ERROR_INVALID_ADDR.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_tx_buffer Pointer to the transmit buffer. Can be NULL
* if there is nothing to send.
* @param tx_buffer_length Length of the transmit buffer.
* @param[in] p_rx_buffer Pointer to the receive buffer. Can be NULL
* if there is nothing to receive.
* @param rx_buffer_length Length of the receive buffer.
*
* @retval NRF_SUCCESS If the operation was successful.
* @retval NRF_ERROR_BUSY If a previously started transfer has not finished
* yet.
* @retval NRF_ERROR_INVALID_ADDR If the provided buffers are not placed in the Data
* RAM region.
*/
ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance,
uint8_t const * p_tx_buffer,
uint8_t tx_buffer_length,
uint8_t * p_rx_buffer,
uint8_t rx_buffer_length);
/**
* @brief Function for starting the SPI data transfer with additional option flags.
*
* Function enables customizing the transfer by using option flags.
*
* Additional options are provided using the flags parameter:
*
* - @ref NRF_DRV_SPI_FLAG_TX_POSTINC and @ref NRF_DRV_SPI_FLAG_RX_POSTINC<span></span>:
* Post-incrementation of buffer addresses. Supported only by SPIM.
* - @ref NRF_DRV_SPI_FLAG_HOLD_XFER<span></span>: Driver is not starting the transfer. Use this
* flag if the transfer is triggered externally by PPI. Supported only by SPIM. Use
* @ref nrf_drv_twi_start_task_get to get the address of the start task.
* - @ref NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER<span></span>: No user event handler after transfer
* completion. This also means no interrupt at the end of the transfer. Supported only by SPIM.
* If @ref NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER is used, the driver does not set the instance into
* busy state, so you must ensure that the next transfers are set up when SPIM is not active.
* @ref nrf_drv_spi_end_event_get function can be used to detect end of transfer. Option can be used
* together with @ref NRF_DRV_SPI_FLAG_REPEATED_XFER to prepare a sequence of SPI transfers
* without interruptions.
* - @ref NRF_DRV_SPI_FLAG_REPEATED_XFER<span></span>: Prepare for repeated transfers. You can set
* up a number of transfers that will be triggered externally (for example by PPI). An example is
* a TXRX transfer with the options @ref NRF_DRV_SPI_FLAG_RX_POSTINC,
* @ref NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER, and @ref NRF_DRV_SPI_FLAG_REPEATED_XFER. After the
* transfer is set up, a set of transfers can be triggered by PPI that will read, for example,
* the same register of an external component and put it into a RAM buffer without any interrupts.
* @ref nrf_drv_spi_end_event_get can be used to get the address of the END event, which can be
* used to count the number of transfers. If @ref NRF_DRV_SPI_FLAG_REPEATED_XFER is used,
* the driver does not set the instance into busy state, so you must ensure that the next
* transfers are set up when SPIM is not active. Supported only by SPIM.
* @note Function is intended to be used only in non-blocking mode.
*
* @param p_instance Pointer to the driver instance structure.
* @param p_xfer_desc Pointer to the transfer descriptor.
* @param flags Transfer options (0 for default settings).
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_BUSY If the driver is not ready for a new transfer.
* @retval NRF_ERROR_NOT_SUPPORTED If the provided parameters are not supported.
* @retval NRF_ERROR_INVALID_ADDR If the provided buffers are not placed in the Data
* RAM region.
*/
ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t const * const p_instance,
nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
uint32_t flags);
/**
* @brief Function for returning the address of a SPIM start task.
*
* This function should be used if @ref nrf_drv_spi_xfer was called with the flag @ref NRF_DRV_SPI_FLAG_HOLD_XFER.
* In that case, the transfer is not started by the driver, but it must be started externally by PPI.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @return Start task address.
*/
uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance);
/**
* @brief Function for returning the address of a END SPIM event.
*
* A END event can be used to detect the end of a transfer if the @ref NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER
* option is used.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @return END event address.
*/
uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance);
#ifdef __cplusplus
}
#endif
#endif // NRF_DRV_SPI_H__
/** @} */

View File

@@ -0,0 +1,630 @@
/**
* Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**@file
*
* @defgroup ser_phy_spi_5W_hw_driver_master spi_5W_master.c
* @{
* @ingroup ser_phy_spi_5W_hw_driver_master
*
* @brief SPI_5W_RAW hardware driver.
*/
#include "app_error.h"
#include "app_util_platform.h"
#include "nrf_gpio.h"
#include "nrf.h"
#include "spi_5W_master.h"
#include "ser_config_5W_app.h"
#include "ser_phy_debug_app.h"
#include "sdk_common.h"
#define _static
#define DOUBLE_BUFFERED /**< A flag for enabling double buffering. */
#define SPI_PIN_DISCONNECTED 0xFFFFFFFF /**< A value used to the PIN deinitialization. */
#define SPI_DEFAULT_TX_BYTE 0x00 /**< Default byte (used to clock transmission
from slave to the master) */
typedef struct
{
NRF_SPI_Type * p_nrf_spi; /**< A pointer to the NRF SPI master */
IRQn_Type irq_type; /**< A type of NVIC IRQn */
uint8_t * p_tx_buffer; /**< A pointer to TX buffer. */
uint16_t tx_length; /**< A length of TX buffer. */
uint16_t tx_index; /**< A index of the current element in the TX buffer. */
uint8_t * p_rx_buffer; /**< A pointer to RX buffer. */
uint16_t rx_length; /**< A length RX buffer. */
uint16_t rx_index; /**< A index of the current element in the RX buffer. */
uint16_t max_length; /**< Max length (Max of the TX and RX length). */
uint16_t bytes_count;
uint8_t pin_slave_select; /**< A pin for Slave Select. */
spi_master_event_handler_t callback_event_handler; /**< A handler for event callback function. */
spi_master_state_t state; /**< A state of an instance of SPI master. */
bool start_flag;
bool abort_flag;
} spi_master_instance_t;
#ifdef _SPI_5W_
typedef enum
{
HOOK_STATE_DISABLED,
HOOK_STATE_IDLE,
HOOK_STATE_GUARDED,
HOOK_STATE_ABORTED,
HOOK_STATE_RESTARTED,
HOOK_STATE_PASSING
} spi_hook_state_t;
_static spi_master_event_handler_t m_ser_phy_event_handler;
_static spi_master_hw_instance_t m_spi_master_hw_instance;
_static spi_hook_state_t m_hook_state = HOOK_STATE_DISABLED;
#endif
#ifdef SER_PHY_DEBUG_APP_ENABLE
_static spi_master_raw_callback_t m_debug_callback;
#endif
_static spi_master_instance_t m_spi_master_instances[SPI_MASTER_HW_ENABLED_COUNT];
static __INLINE spi_master_instance_t * spi_master_get_instance(
const spi_master_hw_instance_t spi_master_hw_instance);
static __INLINE void spi_master_send_recv_irq(spi_master_instance_t * const p_spi_instance);
static __INLINE void spi_master_signal_evt(spi_master_instance_t * const p_spi_instance,
spi_master_evt_type_t event_type,
const uint16_t data);
#ifdef SPI_MASTER_0_ENABLE
/**
* @brief SPI0 interrupt handler.
*/
void SPI0_TWI0_IRQHandler(void)
{
if (NRF_SPI0->EVENTS_READY != 0)
{
NRF_SPI0->EVENTS_READY = 0;
spi_master_instance_t * p_spi_instance = spi_master_get_instance(SPI_MASTER_0);
spi_master_send_recv_irq(p_spi_instance);
}
}
#endif //SPI_MASTER_0_ENABLE
#ifdef SPI_MASTER_1_ENABLE
/**
* @brief SPI0 interrupt handler.
*/
void SPI1_TWI1_IRQHandler(void)
{
if (NRF_SPI1->EVENTS_READY != 0)
{
NRF_SPI1->EVENTS_READY = 0;
spi_master_instance_t * p_spi_instance = spi_master_get_instance(SPI_MASTER_1);
spi_master_send_recv_irq(p_spi_instance);
}
}
#endif //SPI_MASTER_1_ENABLE
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
/**@brief Function for getting an instance of SPI master. */
static __INLINE spi_master_instance_t * spi_master_get_instance(
const spi_master_hw_instance_t spi_master_hw_instance)
{
return &(m_spi_master_instances[(uint8_t)spi_master_hw_instance]);
}
/** @brief Function for initializing instance of SPI master by default values. */
static __INLINE void spi_master_init_hw_instance(NRF_SPI_Type * p_nrf_spi,
IRQn_Type irq_type,
spi_master_instance_t * p_spi_instance)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
p_spi_instance->p_nrf_spi = p_nrf_spi;
p_spi_instance->irq_type = irq_type;
p_spi_instance->p_tx_buffer = NULL;
p_spi_instance->tx_length = 0;
p_spi_instance->tx_index = 0;
p_spi_instance->p_rx_buffer = NULL;
p_spi_instance->rx_length = 0;
p_spi_instance->rx_index = 0;
p_spi_instance->bytes_count = 0;
p_spi_instance->max_length = 0;
p_spi_instance->pin_slave_select = 0;
p_spi_instance->callback_event_handler = NULL;
p_spi_instance->state = SPI_MASTER_STATE_DISABLED;
p_spi_instance->abort_flag = false;
p_spi_instance->start_flag = false;
}
/**@brief Function for initializing TX or RX buffer. */
static __INLINE void spi_master_buffer_init(uint8_t * const p_buf,
const uint16_t buf_len,
uint8_t * * pp_buf,
uint16_t * const p_buf_len,
uint16_t * const p_index)
{
APP_ERROR_CHECK_BOOL(pp_buf != NULL);
APP_ERROR_CHECK_BOOL(p_buf_len != NULL);
APP_ERROR_CHECK_BOOL(p_index != NULL);
*pp_buf = p_buf;
*p_buf_len = (p_buf != NULL) ? buf_len : 0;
*p_index = 0;
}
/**@brief Function for releasing TX or RX buffer. */
static __INLINE void spi_master_buffer_release(uint8_t * * const pp_buf, uint16_t * const p_buf_len)
{
APP_ERROR_CHECK_BOOL(pp_buf != NULL);
APP_ERROR_CHECK_BOOL(p_buf_len != NULL);
*pp_buf = NULL;
*p_buf_len = 0;
}
/**@brief Function for sending events by callback. */
static __INLINE void spi_master_signal_evt(spi_master_instance_t * const p_spi_instance,
spi_master_evt_type_t event_type,
const uint16_t data)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
if (p_spi_instance->callback_event_handler != NULL)
{
spi_master_evt_t event = {SPI_MASTER_EVT_TYPE_MAX, 0};
event.type = event_type;
event.data = data;
p_spi_instance->callback_event_handler(event);
}
}
/**@brief Function insert to a TX buffer another byte or two bytes (depends on flag @ref DOUBLE_BUFFERED). */
static __INLINE void spi_master_send_initial_bytes(spi_master_instance_t * const p_spi_instance)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
#ifdef DOUBLE_BUFFERED
if (p_spi_instance->tx_index < p_spi_instance->max_length)
{
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
}
#endif
}
/**@brief Function for receiving and sending data from IRQ. (The same for both IRQs). */
static __INLINE void spi_master_send_recv_irq(spi_master_instance_t * const p_spi_instance)
{
uint8_t rx_byte;
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
APP_ERROR_CHECK_BOOL(p_spi_instance->state == SPI_MASTER_STATE_BUSY);
p_spi_instance->bytes_count++;
rx_byte = p_spi_instance->p_nrf_spi->RXD;
if (p_spi_instance->start_flag)
{
p_spi_instance->start_flag = false;
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_FIRST_BYTE_RECEIVED, (uint16_t)rx_byte);
}
else if (p_spi_instance->abort_flag ) //this is tricky, but callback for SPI_MASTER_EVT_FIRST_BYTE_RECEIVED will set this flag for a first byte, which is bad because there is still byte in a buffer
{ //and for a single byte transaction you will get XFERDONE event to restart
p_spi_instance->abort_flag = false;
p_spi_instance->state = SPI_MASTER_STATE_ABORTED;
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_ABORTED, 0);
return;
}
if ((p_spi_instance->p_rx_buffer != NULL) &&
(p_spi_instance->rx_index < p_spi_instance->rx_length))
{
p_spi_instance->p_rx_buffer[p_spi_instance->rx_index++] = rx_byte;
}
if ((p_spi_instance->tx_index < p_spi_instance->max_length) && (!(p_spi_instance->abort_flag))) //do not TX if you know that there is an abort to be done - this should work for a DOUBLE BUFFERING ???
{
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
}
if (p_spi_instance->bytes_count >= p_spi_instance->max_length)
{
APP_ERROR_CHECK_BOOL(p_spi_instance->bytes_count == p_spi_instance->max_length);
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
p_spi_instance->state = SPI_MASTER_STATE_IDLE;
spi_master_signal_evt(p_spi_instance,
SPI_MASTER_EVT_TRANSFER_COMPLETED,
p_spi_instance->tx_index);
}
return;
}
#endif //defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
/**
* @brief Function for opening and initializing a SPI master driver. */
uint32_t spi_master_open(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_config_t const * const p_spi_master_config)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
VERIFY_PARAM_NOT_NULL(p_spi_master_config);
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
switch (spi_master_hw_instance)
{
#ifdef SPI_MASTER_0_ENABLE
case SPI_MASTER_0:
spi_master_init_hw_instance(NRF_SPI0, SPI0_TWI0_IRQn, p_spi_instance);
break;
#endif //SPI_MASTER_0_ENABLE
#ifdef SPI_MASTER_1_ENABLE
case SPI_MASTER_1:
spi_master_init_hw_instance(NRF_SPI1, SPI1_TWI1_IRQn, p_spi_instance);
break;
#endif //SPI_MASTER_1_ENABLE
default:
break;
}
//A Slave select must be set as high before setting it as output,
//because during connect it to the pin it causes glitches.
nrf_gpio_pin_set(p_spi_master_config->SPI_Pin_SS);
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_SS);
nrf_gpio_pin_set(p_spi_master_config->SPI_Pin_SS);
//Configure GPIO
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_SCK);
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_MOSI);
nrf_gpio_cfg_input(p_spi_master_config->SPI_Pin_MISO, NRF_GPIO_PIN_NOPULL);
p_spi_instance->pin_slave_select = p_spi_master_config->SPI_Pin_SS;
/* Configure SPI hardware */
p_spi_instance->p_nrf_spi->PSELSCK = p_spi_master_config->SPI_Pin_SCK;
p_spi_instance->p_nrf_spi->PSELMOSI = p_spi_master_config->SPI_Pin_MOSI;
p_spi_instance->p_nrf_spi->PSELMISO = p_spi_master_config->SPI_Pin_MISO;
p_spi_instance->p_nrf_spi->FREQUENCY = p_spi_master_config->SPI_Freq;
p_spi_instance->p_nrf_spi->CONFIG =
(uint32_t)(p_spi_master_config->SPI_CPHA << SPI_CONFIG_CPHA_Pos) |
(p_spi_master_config->SPI_CPOL << SPI_CONFIG_CPOL_Pos) |
(p_spi_master_config->SPI_ORDER << SPI_CONFIG_ORDER_Pos);
/* Clear waiting interrupts and events */
p_spi_instance->p_nrf_spi->EVENTS_READY = 0;
NVIC_ClearPendingIRQ(p_spi_instance->irq_type);
NVIC_SetPriority(p_spi_instance->irq_type, APP_IRQ_PRIORITY_MID);
/* Clear event handler */
p_spi_instance->callback_event_handler = NULL;
/* Enable interrupt */
p_spi_instance->p_nrf_spi->INTENSET = (SPI_INTENSET_READY_Set << SPI_INTENCLR_READY_Pos);
NVIC_EnableIRQ(p_spi_instance->irq_type);
/* Enable SPI hardware */
p_spi_instance->p_nrf_spi->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
/* Change state to IDLE */
p_spi_instance->state = SPI_MASTER_STATE_IDLE;
return NRF_SUCCESS;
#else
return NRF_ERROR_NOT_SUPPORTED;
#endif
}
/**
* @brief Function for closing a SPI master driver.
*/
void spi_master_close(const spi_master_hw_instance_t spi_master_hw_instance)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
/* Disable interrupt */
NVIC_ClearPendingIRQ(p_spi_instance->irq_type);
NVIC_DisableIRQ(p_spi_instance->irq_type);
p_spi_instance->p_nrf_spi->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos);
/* Set Slave Select pin as input with pull-up. */
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
nrf_gpio_cfg_input(p_spi_instance->pin_slave_select, NRF_GPIO_PIN_PULLUP);
p_spi_instance->pin_slave_select = (uint8_t)0xFF;
/* Disconnect pins from SPI hardware */
p_spi_instance->p_nrf_spi->PSELSCK = (uint32_t)SPI_PIN_DISCONNECTED;
p_spi_instance->p_nrf_spi->PSELMOSI = (uint32_t)SPI_PIN_DISCONNECTED;
p_spi_instance->p_nrf_spi->PSELMISO = (uint32_t)SPI_PIN_DISCONNECTED;
/* Reset to default values */
spi_master_init_hw_instance(NULL, (IRQn_Type)0, p_spi_instance);
#else
return;
#endif
}
/**
* @brief Function for getting current state of the SPI master driver.
*/
__INLINE spi_master_state_t spi_master_get_state(
const spi_master_hw_instance_t spi_master_hw_instance)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * spi_instance = spi_master_get_instance(spi_master_hw_instance);
return spi_instance->state;
#else
return SPI_MASTER_STATE_DISABLED;
#endif
}
/**
* @brief Function for event handler registration.
*/
__INLINE void spi_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * spi_instance = spi_master_get_instance(spi_master_hw_instance);
spi_instance->callback_event_handler = event_handler;
#else
return;
#endif
}
/**
* @brief Function for transmitting data between SPI master and SPI slave.
*/
uint32_t spi_master_send_recv(const spi_master_hw_instance_t spi_master_hw_instance,
uint8_t * const p_tx_buf, const uint16_t tx_buf_len,
uint8_t * const p_rx_buf, const uint16_t rx_buf_len)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
uint32_t err_code = NRF_SUCCESS;
uint16_t max_length = 0;
if (p_spi_instance->state == SPI_MASTER_STATE_IDLE)
{
NVIC_DisableIRQ(p_spi_instance->irq_type);
max_length = (rx_buf_len > tx_buf_len) ? rx_buf_len : tx_buf_len;
if (max_length > 0)
{
p_spi_instance->state = SPI_MASTER_STATE_BUSY;
p_spi_instance->start_flag = true; //abort_flag should set by abort and cleared only by restart
p_spi_instance->bytes_count = 0;
p_spi_instance->max_length = max_length;
spi_master_buffer_release(&(p_spi_instance->p_tx_buffer), &(p_spi_instance->tx_length));
spi_master_buffer_release(&(p_spi_instance->p_rx_buffer), &(p_spi_instance->rx_length));
/* Initialize buffers */
spi_master_buffer_init(p_tx_buf, tx_buf_len, &(p_spi_instance->p_tx_buffer),
&(p_spi_instance->tx_length), &(p_spi_instance->tx_index));
spi_master_buffer_init(p_rx_buf, rx_buf_len, &(p_spi_instance->p_rx_buffer),
&(p_spi_instance->rx_length), &(p_spi_instance->rx_index));
nrf_gpio_pin_clear(p_spi_instance->pin_slave_select);
spi_master_send_initial_bytes(p_spi_instance);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_STARTED, max_length);
}
else
{
err_code = NRF_ERROR_INVALID_PARAM;
}
NVIC_EnableIRQ(p_spi_instance->irq_type);
}
else
{
err_code = NRF_ERROR_BUSY;
}
return err_code;
#else
return NRF_ERROR_NOT_SUPPORTED;
#endif
}
#ifdef _SPI_5W_
/**
* @brief Function for aborting transfer
*/
uint32_t spi_master_abort(const spi_master_hw_instance_t spi_master_hw_instance)
{
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
NVIC_DisableIRQ(p_spi_instance->irq_type);
if (p_spi_instance->state == SPI_MASTER_STATE_BUSY)
{
//set_flag - but only when there are events pending
//ignore when in IDLE - must be able to restart a completed transfer
p_spi_instance->abort_flag = true;
}
NVIC_EnableIRQ(p_spi_instance->irq_type);
return NRF_SUCCESS;
}
/**
* @brief Function for restarting transfer
*/
uint32_t spi_master_restart(const spi_master_hw_instance_t spi_master_hw_instance)
{
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
NVIC_DisableIRQ(p_spi_instance->irq_type);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_RESTARTED, 0);
p_spi_instance->state = SPI_MASTER_STATE_BUSY;
p_spi_instance->bytes_count = 0;
p_spi_instance->tx_index = 0;
p_spi_instance->rx_index = 0;
p_spi_instance->start_flag = true;
p_spi_instance->abort_flag = false; //you should force clearing abort flag - no other way for 1 byte transfer
nrf_gpio_pin_clear(p_spi_instance->pin_slave_select);
spi_master_send_initial_bytes(p_spi_instance);
NVIC_EnableIRQ(p_spi_instance->irq_type);
return NRF_SUCCESS;
}
static void spi_5W_master_event_handler(spi_master_evt_t evt)
{
switch (m_hook_state)
{
case HOOK_STATE_IDLE:
if (evt.type == SPI_MASTER_EVT_TRANSFER_STARTED)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_GUARDED(0);
m_hook_state = HOOK_STATE_GUARDED;
m_ser_phy_event_handler(evt);
}
break;
case HOOK_STATE_GUARDED:
if (evt.type == SPI_MASTER_EVT_FIRST_BYTE_RECEIVED)
{
if (evt.data == 0)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_PASSED(0);
m_hook_state = HOOK_STATE_PASSING;
}
else
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_ABORTED(0);
m_hook_state = HOOK_STATE_ABORTED;
(void)spi_master_abort(m_spi_master_hw_instance);
}
}
break;
case HOOK_STATE_ABORTED:
if ((evt.type == SPI_MASTER_EVT_TRANSFER_ABORTED) ||
(evt.type == SPI_MASTER_EVT_TRANSFER_COMPLETED))
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_RESTARTED(0);
m_hook_state = HOOK_STATE_RESTARTED;
(void)spi_master_restart(m_spi_master_hw_instance);
}
break;
case HOOK_STATE_RESTARTED:
if (evt.type == SPI_MASTER_EVT_TRANSFER_RESTARTED)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_GUARDED(0);
m_hook_state = HOOK_STATE_GUARDED;
}
break;
case HOOK_STATE_PASSING:
if (evt.type == SPI_MASTER_EVT_TRANSFER_COMPLETED)
{
m_hook_state = HOOK_STATE_IDLE;
m_ser_phy_event_handler(evt); //this is the only way to get a signal from complete transaction
}
break;
default:
break;
}
}
void spi_5W_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler)
{
m_ser_phy_event_handler = event_handler;
m_spi_master_hw_instance = spi_master_hw_instance;
m_hook_state = HOOK_STATE_IDLE;
spi_master_evt_handler_reg(spi_master_hw_instance, spi_5W_master_event_handler);
return;
}
#endif
/** @} */

View File

@@ -0,0 +1,207 @@
/**
* Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef APP_SPI_MASTER_H
#define APP_SPI_MASTER_H
#include <stdint.h>
#include <stdlib.h>
#include "boards.h"
#ifdef __cplusplus
extern "C" {
#endif
#define _SPI_5W_
/**@brief Struct containing configuration parameters of the SPI master. */
typedef struct
{
uint32_t SPI_Freq; /**< SPI frequency. */
uint32_t SPI_Pin_SCK; /**< SCK pin number. */
uint32_t SPI_Pin_MISO; /**< MISO pin number. */
uint32_t SPI_Pin_MOSI; /**< MOSI pin number .*/
uint32_t SPI_Pin_SS; /**< Slave select pin number. */
uint8_t SPI_ORDER; /**< Bytes order MSBFIRST or LSBFIRST. */
uint8_t SPI_CPOL; /**< Serial clock polarity ACTIVEHIGH or ACTIVELOW. */
uint8_t SPI_CPHA; /**< Serial clock phase LEADING or TRAILING. */
} spi_master_config_t;
/**@brief SPI master driver events types. */
typedef enum
{
SPI_MASTER_EVT_TRANSFER_STARTED = 0, /**< An event indicating that transfer has been started */
SPI_MASTER_EVT_TRANSFER_COMPLETED, /**< An event indicating that transfer has been completed */
SPI_MASTER_EVT_TRANSFER_ABORTED, /**< An event indicating that transfer has been aborted */
SPI_MASTER_EVT_TRANSFER_RESTARTED, /**< An event indicating that transfer has been resumed */
SPI_MASTER_EVT_FIRST_BYTE_RECEIVED, /**< An event indicating end of one byte transfer */
SPI_MASTER_EVT_TYPE_MAX /**< Enumeration upper bound. */
} spi_master_evt_type_t;
/**@brief Struct containing parameters of the SPI MASTER event */
typedef struct
{
spi_master_evt_type_t type; /**< Type of an event */
uint16_t data; /**< event data - context dependent */
} spi_master_evt_t;
/**@brief SPI MASTER internal states types. */
typedef enum
{
SPI_MASTER_STATE_DISABLED, /**< A state indicating that SPI master is disabled. */
SPI_MASTER_STATE_BUSY, /**< A state indicating that SPI master is sending now. */
SPI_MASTER_STATE_ABORTED,
SPI_MASTER_STATE_IDLE /**< A state indicating that SPI master is idle now. */
} spi_master_state_t;
/**@brief Instances of SPI master module. */
typedef enum
{
#ifdef SPI_MASTER_0_ENABLE
SPI_MASTER_0, /**< A instance of SPI master 0. */
#endif
#ifdef SPI_MASTER_1_ENABLE
SPI_MASTER_1, /**< A instance of SPI master 1. */
#endif
SPI_MASTER_HW_ENABLED_COUNT /**< A number of enabled instances of SPI master. */
} spi_master_hw_instance_t;
/**@brief Type of generic callback function handler to be used by all SPI MASTER driver events.
*
* @param[in] spi_master_evt SPI MASTER driver event.
*/
typedef void (*spi_master_event_handler_t) (spi_master_evt_t spi_master_evt);
/**@brief Function for opening and initializing a SPI master driver.
*
* @note Function initializes SPI master hardware and internal module states, unregister events callback.
*
* @warning If the function has been already called, the function @ref spi_master_close has to be
* called before spi_master_open can be called again.
*
* @param[in] spi_master_hw_instance Instance of SPI master module.
* @param[in] p_spi_master_config Pointer to configuration structure which will be used
* to initialize SPI MASTER hardware.
*
* @retval NRF_SUCCESS Operation success.
* @retval NRF_ERROR_INVALID_STATE Operation failure. The function has been already called.
* To call it again the function @ref spi_master_close
* has to be called previously.
* @retval NRF_ERROR_NULL Operation failure. NULL pointer supplied.
*/
uint32_t spi_master_open(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_config_t const * const p_spi_master_config);
/**@brief Function for closing a SPI MASTER driver.
*
* @note Function disable hardware, reset internal module states and unregister events callback
* function.
*
* @param[in] spi_master_hw_instance A instance of SPI master.
*/
void spi_master_close(const spi_master_hw_instance_t spi_master_hw_instance);
/**@brief Function for transferring data between SPI master and SPI slave
*
* @note Function registers buffers pointed by p_tx_buf and p_rx_buf parameters, after that starts transmission.
* Function generates an event of type @ref SPI_MASTER_EVT_TRANSFER_STARTED when transfer has been started
* and @ref SPI_MASTER_EVT_TRANSFER_COMPLETED when transfer has been completed.
*
* @param[in] spi_master_hw_instance Instance of SPI master module.
* @param[in] p_tx_buf Pointer to a transmit buffer.
* @param[in] tx_buf_len Number of octets to the transfer.
* @param[out] p_rx_buf Pointer to a receive buffer.
* @param[in] rx_buf_len Number of octets to be received.
*
* @retval NRF_SUCCESS Operation success. Packet was registered to the transmission
* and event will be send upon transmission completion.
* @retval NRF_ERROR_BUSY Operation failure. Transmitting of a data is in progress.
*/
uint32_t spi_master_send_recv(const spi_master_hw_instance_t spi_master_hw_instance,
uint8_t * const p_tx_buf, const uint16_t tx_buf_len,
uint8_t * const p_rx_buf, const uint16_t rx_buf_len);
/**@brief Function for registration event handler.
*
* @note Function registers a event handler to be used by SPI MASTER driver for sending events.
* @ref SPI_MASTER_EVT_TRANSFER_STARTED and @ref SPI_MASTER_EVT_TRANSFER_COMPLETED.
*
* @param[in] spi_master_hw_instance Instance of SPI master module.
* @param[in] event_handler Generic callback function handler to be used
* by all SPI master driver events.
*/
void spi_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler);
/**@brief Function for getting current state of the SPI master driver.
*
* @note Function gets current state of the SPI master driver.
*
* @param[in] spi_master_hw_instance Instance of SPI master module.
*
* @retval SPI_MASTER_STATE_DISABLED SPI MASTER is disabled.
* @retval SPI_MASTER_STATE_BUSY SPI_MASTER is sending now.
* @retval SPI_MASTER_STATE_IDLE SPI_MASTER is idle now.
*/
spi_master_state_t spi_master_get_state(const spi_master_hw_instance_t spi_master_hw_instance);
#ifdef _SPI_5W_
uint32_t spi_master_abort(const spi_master_hw_instance_t spi_master_hw_instance);
uint32_t spi_master_restart(const spi_master_hw_instance_t spi_master_hw_instance);
void spi_5W_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler);
#endif
#ifdef __cplusplus
}
#endif
#endif