move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,357 @@
/**
* Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(RTC)
#define ENABLED_RTC_COUNT (RTC0_ENABLED+RTC1_ENABLED+RTC2_ENABLED)
#if ENABLED_RTC_COUNT
#include "nrf_drv_rtc.h"
#include "nrf_rtc.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME "RTC"
#if RTC_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL RTC_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR RTC_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR RTC_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) (event == NRF_RTC_EVENT_TICK ? "NRF_RTC_EVENT_TICK" : \
(event == NRF_RTC_EVENT_OVERFLOW ? "NRF_RTC_EVENT_OVERFLOW" : \
(event == NRF_RTC_EVENT_COMPARE_0 ? "NRF_RTC_EVENT_COMPARE_0" : \
(event == NRF_RTC_EVENT_COMPARE_1 ? "NRF_RTC_EVENT_COMPARE_1" : \
(event == NRF_RTC_EVENT_COMPARE_2 ? "NRF_RTC_EVENT_COMPARE_2" : \
(event == NRF_RTC_EVENT_COMPARE_3 ? "NRF_RTC_EVENT_COMPARE_3" : "UNKNOWN EVENT")
#else //RTC_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event) ""
#define NRF_LOG_LEVEL 0
#endif //RTC_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
/**@brief RTC driver instance control block structure. */
typedef struct
{
nrf_drv_state_t state; /**< Instance state. */
bool reliable; /**< Reliable mode flag. */
uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */
} nrf_drv_rtc_cb_t;
// User callbacks local storage.
static nrf_drv_rtc_handler_t m_handlers[ENABLED_RTC_COUNT];
static nrf_drv_rtc_cb_t m_cb[ENABLED_RTC_COUNT];
ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance,
nrf_drv_rtc_config_t const * p_config,
nrf_drv_rtc_handler_t handler)
{
ASSERT(p_config);
ret_code_t err_code;
if (handler)
{
m_handlers[p_instance->instance_id] = handler;
}
else
{
err_code = NRF_ERROR_INVALID_PARAM;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
if (m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
nrf_drv_common_irq_enable(p_instance->irq, p_config->interrupt_priority);
nrf_rtc_prescaler_set(p_instance->p_reg, p_config->prescaler);
m_cb[p_instance->instance_id].reliable = p_config->reliable;
m_cb[p_instance->instance_id].tick_latency = p_config->tick_latency;
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK;
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
nrf_drv_common_irq_disable(p_instance->irq);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Uninitialized.\r\n");
}
void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_START);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON;
NRF_LOG_INFO("Enabled.\r\n");
}
void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
NRF_LOG_INFO("Disabled.\r\n");
}
ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel<p_instance->cc_channel_count);
ret_code_t err_code;
uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel);
nrf_rtc_event_disable(p_instance->p_reg,int_mask);
if (nrf_rtc_int_is_enabled(p_instance->p_reg,int_mask))
{
nrf_rtc_int_disable(p_instance->p_reg,int_mask);
if (nrf_rtc_event_pending(p_instance->p_reg,event))
{
nrf_rtc_event_clear(p_instance->p_reg,event);
err_code = NRF_ERROR_TIMEOUT;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
}
NRF_LOG_INFO("RTC id: %d, channel disabled: %d.\r\n", p_instance->instance_id, channel);
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance,
uint32_t channel,
uint32_t val,
bool enable_irq)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel<p_instance->cc_channel_count);
ret_code_t err_code;
uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel);
nrf_rtc_event_disable(p_instance->p_reg, int_mask);
nrf_rtc_int_disable(p_instance->p_reg, int_mask);
val = RTC_WRAP(val);
if (m_cb[p_instance->instance_id].reliable)
{
nrf_rtc_cc_set(p_instance->p_reg,channel,val);
uint32_t cnt = nrf_rtc_counter_get(p_instance->p_reg);
int32_t diff = cnt - val;
if (cnt < val)
{
diff += RTC_COUNTER_COUNTER_Msk;
}
if (diff < m_cb[p_instance->instance_id].tick_latency)
{
err_code = NRF_ERROR_TIMEOUT;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
}
else
{
nrf_rtc_cc_set(p_instance->p_reg,channel,val);
}
if (enable_irq)
{
nrf_rtc_event_clear(p_instance->p_reg,event);
nrf_rtc_int_enable(p_instance->p_reg, int_mask);
}
nrf_rtc_event_enable(p_instance->p_reg,int_mask);
NRF_LOG_INFO("RTC id: %d, channel enabled: %d, compare value: %d.\r\n", p_instance->instance_id, channel, val);
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
{
nrf_rtc_event_t event = NRF_RTC_EVENT_TICK;
uint32_t mask = NRF_RTC_INT_TICK_MASK;
nrf_rtc_event_clear(p_instance->p_reg, event);
nrf_rtc_event_enable(p_instance->p_reg, mask);
if (enable_irq)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
NRF_LOG_INFO("Tick events enabled.\r\n");
}
void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_TICK_MASK;
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
NRF_LOG_INFO("Tick events disabled.\r\n");
}
void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
{
nrf_rtc_event_t event = NRF_RTC_EVENT_OVERFLOW;
uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
nrf_rtc_event_clear(p_instance->p_reg, event);
nrf_rtc_event_enable(p_instance->p_reg, mask);
if (enable_irq)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
}
void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
}
uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance)
{
uint32_t ticks;
if (m_cb[p_instance->instance_id].reliable)
{
ticks = RTC_COUNTER_COUNTER_Msk - m_cb[p_instance->instance_id].tick_latency;
}
else
{
ticks = RTC_COUNTER_COUNTER_Msk;
}
return ticks;
}
/**@brief Generic function for handling RTC interrupt
*
* @param[in] p_reg Pointer to instance register structure.
* @param[in] instance_id Index of instance.
*/
__STATIC_INLINE void nrf_drv_rtc_int_handler(NRF_RTC_Type * p_reg,
uint32_t instance_id,
uint32_t channel_count)
{
uint32_t i;
uint32_t int_mask = (uint32_t)NRF_RTC_INT_COMPARE0_MASK;
nrf_rtc_event_t event = NRF_RTC_EVENT_COMPARE_0;
for (i = 0; i < channel_count; i++)
{
if (nrf_rtc_int_is_enabled(p_reg,int_mask) && nrf_rtc_event_pending(p_reg,event))
{
nrf_rtc_event_disable(p_reg,int_mask);
nrf_rtc_int_disable(p_reg,int_mask);
nrf_rtc_event_clear(p_reg,event);
NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n",
(uint32_t)EVT_TO_STR(event), (uint32_t)instance_id);
m_handlers[instance_id]((nrf_drv_rtc_int_type_t)i);
}
int_mask <<= 1;
event = (nrf_rtc_event_t)((uint32_t)event + sizeof(uint32_t));
}
event = NRF_RTC_EVENT_TICK;
if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_TICK_MASK) &&
nrf_rtc_event_pending(p_reg, event))
{
nrf_rtc_event_clear(p_reg, event);
NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id);
m_handlers[instance_id](NRF_DRV_RTC_INT_TICK);
}
event = NRF_RTC_EVENT_OVERFLOW;
if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_OVERFLOW_MASK) &&
nrf_rtc_event_pending(p_reg, event))
{
nrf_rtc_event_clear(p_reg,event);
NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id);
m_handlers[instance_id](NRF_DRV_RTC_INT_OVERFLOW);
}
}
#if NRF_MODULE_ENABLED(RTC0)
void RTC0_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC0,RTC0_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(0));
}
#endif
#if NRF_MODULE_ENABLED(RTC1)
void RTC1_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC1,RTC1_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(1));
}
#endif
#if NRF_MODULE_ENABLED(RTC2)
void RTC2_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC2,RTC2_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(2));
}
#endif
#endif //ENABLED_RTC_COUNT
#endif //NRF_MODULE_ENABLED(RTC)

View File

@@ -0,0 +1,366 @@
/**
* Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_DRV_RTC_H
#define NRF_DRV_RTC_H
#include "sdk_config.h"
#include "nordic_common.h"
#include "nrf_drv_common.h"
#include "nrf_rtc.h"
#include "sdk_errors.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @addtogroup nrf_rtc RTC HAL and driver
* @ingroup nrf_drivers
* @brief Real timer counter (RTC) APIs.
* @details The RTC HAL provides basic APIs for accessing the registers of the real time counter (RTC).
* The RTC driver provides APIs on a higher level.
*
* @defgroup nrf_drv_rtc RTC driver
* @{
* @ingroup nrf_rtc
* @brief Real timer counter (RTC) driver.
*/
/**@brief Macro to convert microseconds into ticks. */
#define RTC_US_TO_TICKS(us,freq) ((us * freq) / 1000000)
/**
* @enum nrf_drv_rtc_int_type_t
* @brief RTC driver interrupt types.
*/
typedef enum
{
NRF_DRV_RTC_INT_COMPARE0 = 0, /**< Interrupt from COMPARE0 event. */
NRF_DRV_RTC_INT_COMPARE1 = 1, /**< Interrupt from COMPARE1 event. */
NRF_DRV_RTC_INT_COMPARE2 = 2, /**< Interrupt from COMPARE2 event. */
NRF_DRV_RTC_INT_COMPARE3 = 3, /**< Interrupt from COMPARE3 event. */
NRF_DRV_RTC_INT_TICK = 4, /**< Interrupt from TICK event. */
NRF_DRV_RTC_INT_OVERFLOW = 5 /**< Interrupt from OVERFLOW event. */
} nrf_drv_rtc_int_type_t;
/**@brief RTC driver instance structure. */
typedef struct
{
NRF_RTC_Type * p_reg; /**< Pointer to instance register set. */
IRQn_Type irq; /**< Instance IRQ ID. */
uint8_t instance_id; /**< Instance index. */
uint8_t cc_channel_count; /**< Number of capture/compare channels. */
} nrf_drv_rtc_t;
#define RTC0_INSTANCE_INDEX 0
#define RTC1_INSTANCE_INDEX RTC0_INSTANCE_INDEX+RTC0_ENABLED
#define RTC2_INSTANCE_INDEX RTC1_INSTANCE_INDEX+RTC1_ENABLED
/**@brief Macro for creating RTC driver instance.*/
#define NRF_DRV_RTC_INSTANCE(id) \
{ \
.p_reg = CONCAT_2(NRF_RTC, id), \
.irq = CONCAT_3(RTC, id, _IRQn), \
.instance_id = CONCAT_3(RTC, id, _INSTANCE_INDEX),\
.cc_channel_count = NRF_RTC_CC_CHANNEL_COUNT(id), \
}
/**@brief RTC driver instance configuration structure. */
typedef struct
{
uint16_t prescaler; /**< Prescaler. */
uint8_t interrupt_priority; /**< Interrupt priority. */
uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */
bool reliable; /**< Reliable mode flag. */
} nrf_drv_rtc_config_t;
/**@brief RTC instance default configuration. */
#define NRF_DRV_RTC_DEFAULT_CONFIG \
{ \
.prescaler = RTC_FREQ_TO_PRESCALER(RTC_DEFAULT_CONFIG_FREQUENCY), \
.interrupt_priority = RTC_DEFAULT_CONFIG_IRQ_PRIORITY, \
.reliable = RTC_DEFAULT_CONFIG_RELIABLE, \
.tick_latency = RTC_US_TO_TICKS(NRF_MAXIMUM_LATENCY_US, RTC_DEFAULT_CONFIG_FREQUENCY), \
}
/**@brief RTC driver instance handler type. */
typedef void (*nrf_drv_rtc_handler_t)(nrf_drv_rtc_int_type_t int_type);
/**@brief Function for initializing the RTC driver instance.
*
* After initialization, the instance is in power off state.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_config Initial configuration. Default configuration used if NULL.
* @param[in] handler User's event handler.
*
* @retval NRF_SUCCESS If successfully initialized.
* @retval NRF_ERROR_INVALID_PARAM If no handler was provided.
* @retval NRF_ERROR_INVALID_STATE If the instance is already initialized.
*/
ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance,
nrf_drv_rtc_config_t const * p_config,
nrf_drv_rtc_handler_t handler);
/**@brief Function for uninitializing the RTC driver instance.
*
* After uninitialization, the instance is in idle state. The hardware should return to the state
* before initialization. The function asserts if the instance is in idle state.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for enabling the RTC driver instance.
*
* @note Function asserts if instance is enabled.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for disabling the RTC driver instance.
*
* @note Function asserts if instance is disabled.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for setting a compare channel.
*
* The function asserts if the instance is not initialized or if the channel parameter is
* wrong. The function powers on the instance if the instance was in power off state.
*
* The driver is not entering a critical section when configuring RTC, which means that it can be
* preempted for a certain amount of time. When the driver was preempted and the value to be set
* is short in time, there is a risk that the driver sets a compare value that is
* behind. If RTCn_CONFIG_RELIABLE is 1 for the given instance, the Reliable mode handles that case.
* However, to detect if the requested value is behind, this mode makes the following assumptions:
* - The maximum preemption time in ticks (8 - bit value) is known and is less than 7.7 ms
* (for prescaler = 0, RTC frequency 32 kHz).
* - The requested absolute compare value is not bigger than (0x00FFFFFF) - tick_latency. It is
* the user's responsibility to ensure that.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] channel One of the instance's channels.
* @param[in] val Absolute value to be set in the compare register.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_TIMEOUT If the compare was not set because the request value is behind the current counter
* value. This error can only be reported if RTCn_CONFIG_RELIABLE = 1.
*/
ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance,
uint32_t channel,
uint32_t val,
bool enable_irq);
/**@brief Function for disabling a channel.
*
* This function disables channel events and channel interrupts. The function asserts if the instance is not
* initialized or if the channel parameter is wrong.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] channel One of the instance's channels.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_TIMEOUT If an interrupt was pending on the requested channel.
*/
ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel);
/**@brief Function for enabling tick.
*
* This function enables the tick event and optionally the interrupt. The function asserts if the instance is not
* powered on.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*/
void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq);
/**@brief Function for disabling tick.
*
* This function disables the tick event and interrupt.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for enabling overflow.
*
* This function enables the overflow event and optionally the interrupt. The function asserts if the instance is
* not powered on.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*/
void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq);
/**@brief Function for disabling overflow.
*
* This function disables the overflow event and interrupt.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for getting the maximum relative ticks value that can be set in the compare channel.
*
* When a SoftDevice is used, it occupies the highest level interrupt, so that the application code can be
* interrupted at any moment for a certain period of time. If Reliable mode is enabled, the provided
* maximum latency is taken into account and the return value is smaller than the RTC counter
* resolution. If Reliable mode is disabled, the return value equals the counter resolution.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @retval ticks Maximum ticks value.
*/
uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for disabling all instance interrupts.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_mask Pointer to the location where the mask is filled.
*/
__STATIC_INLINE void nrf_drv_rtc_int_disable(nrf_drv_rtc_t const * const p_instance,
uint32_t * p_mask);
/**@brief Function for enabling instance interrupts.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] mask Mask of interrupts to enable.
*/
__STATIC_INLINE void nrf_drv_rtc_int_enable(nrf_drv_rtc_t const * const p_instance, uint32_t mask);
/**@brief Function for retrieving the current counter value.
*
* This function asserts if the instance is not powered on or if p_val is NULL.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @retval value Counter value.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_counter_get(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for clearing the counter value.
*
* This function asserts if the instance is not powered on.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE void nrf_drv_rtc_counter_clear(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for returning a requested task address for the RTC driver instance.
*
* This function asserts if the output pointer is NULL. The task address can be used by the PPI module.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] task One of the peripheral tasks.
*
* @retval Address of task register.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_task_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_task_t task);
/**@brief Function for returning a requested event address for the RTC driver instance.
*
* This function asserts if the output pointer is NULL. The event address can be used by the PPI module.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] event One of the peripheral events.
*
* @retval Address of event register.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_event_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_event_t event);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_drv_rtc_int_disable(nrf_drv_rtc_t const * const p_instance,
uint32_t * p_mask)
{
*p_mask = nrf_rtc_int_get(p_instance->p_reg);
nrf_rtc_int_disable(p_instance->p_reg, NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK);
}
__STATIC_INLINE void nrf_drv_rtc_int_enable(nrf_drv_rtc_t const * const p_instance, uint32_t mask)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_counter_get(nrf_drv_rtc_t const * const p_instance)
{
return nrf_rtc_counter_get(p_instance->p_reg);
}
__STATIC_INLINE void nrf_drv_rtc_counter_clear(nrf_drv_rtc_t const * const p_instance)
{
nrf_rtc_task_trigger(p_instance->p_reg,NRF_RTC_TASK_CLEAR);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_task_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_task_t task)
{
return nrf_rtc_task_address_get(p_instance->p_reg, task);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_event_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_event_t event)
{
return nrf_rtc_event_address_get(p_instance->p_reg, event);
}
#endif /* SUPPRESS_INLINE_IMPLEMENTATION */
/**
*@}
**/
#ifdef __cplusplus
}
#endif
#endif /* NRF_DRV_RTC_H */