move components to SDK dir

This commit is contained in:
Shuanglei Tao
2025-03-03 09:06:26 +08:00
parent 20d1297e57
commit f4f4c9e60d
1021 changed files with 58 additions and 35059 deletions

View File

@@ -0,0 +1,599 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(CLOCK)
#include "nrf_drv_clock.h"
#include "nrf_error.h"
#include "app_util_platform.h"
#ifdef SOFTDEVICE_PRESENT
#include "softdevice_handler.h"
#include "nrf_sdm.h"
#include "nrf_soc.h"
#endif
#define NRF_LOG_MODULE_NAME "CLOCK"
#if CLOCK_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) (event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \
(event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : "UNKNOWN EVENT"))))
#else //CLOCK_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event) ""
#define NRF_LOG_LEVEL 0
#endif //CLOCK_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
/* Validate configuration */
INTERRUPT_PRIORITY_VALIDATION(CLOCK_CONFIG_IRQ_PRIORITY);
/*lint -save -e652 */
#define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC
#define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal
#define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth
/*lint -restore */
#if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT)
#define CALIBRATION_SUPPORT 1
#else
#define CALIBRATION_SUPPORT 0
#endif
typedef enum
{
CAL_STATE_IDLE,
CAL_STATE_CT,
CAL_STATE_HFCLK_REQ,
CAL_STATE_CAL,
CAL_STATE_ABORT,
} nrf_drv_clock_cal_state_t;
/**@brief CLOCK control block. */
typedef struct
{
bool module_initialized; /*< Indicate the state of module */
volatile bool hfclk_on; /*< High-frequency clock state. */
volatile bool lfclk_on; /*< Low-frequency clock state. */
volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */
volatile nrf_drv_clock_handler_item_t * p_hf_head;
volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */
volatile nrf_drv_clock_handler_item_t * p_lf_head;
#if CALIBRATION_SUPPORT
nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item;
nrf_drv_clock_event_handler_t cal_done_handler;
volatile nrf_drv_clock_cal_state_t cal_state;
#endif // CALIBRATION_SUPPORT
} nrf_drv_clock_cb_t;
static nrf_drv_clock_cb_t m_clock_cb;
/**@brief Function for starting LFCLK. This function will return immediately without waiting for start.
*/
static void lfclk_start(void)
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED);
nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART);
}
/**@brief Function for stopping LFCLK and calibration (if it was set up).
*/
static void lfclk_stop(void)
{
#if CALIBRATION_SUPPORT
(void)nrf_drv_clock_calibration_abort();
#endif
#ifdef SOFTDEVICE_PRESENT
// If LFCLK is requested to stop while SD is still enabled,
// it indicates an error in the application.
// Enabling SD should increment the LFCLK request.
ASSERT(!softdevice_handler_is_enabled());
#endif // SOFTDEVICE_PRESENT
nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTOP);
while (nrf_clock_lf_is_running())
{}
m_clock_cb.lfclk_on = false;
}
static void hfclk_start(void)
{
#ifdef SOFTDEVICE_PRESENT
if (softdevice_handler_is_enabled())
{
(void)sd_clock_hfclk_request();
return;
}
#endif // SOFTDEVICE_PRESENT
nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED);
nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART);
}
static void hfclk_stop(void)
{
#ifdef SOFTDEVICE_PRESENT
if (softdevice_handler_is_enabled())
{
(void)sd_clock_hfclk_release();
return;
}
#endif // SOFTDEVICE_PRESENT
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP);
while (nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY))
{}
m_clock_cb.hfclk_on = false;
}
bool nrf_drv_clock_init_check(void)
{
return m_clock_cb.module_initialized;
}
ret_code_t nrf_drv_clock_init(void)
{
ret_code_t err_code = NRF_SUCCESS;
if (m_clock_cb.module_initialized)
{
err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED;
}
else
{
m_clock_cb.p_hf_head = NULL;
m_clock_cb.hfclk_requests = 0;
m_clock_cb.p_lf_head = NULL;
m_clock_cb.lfclk_requests = 0;
nrf_drv_common_power_clock_irq_init();
#ifdef SOFTDEVICE_PRESENT
if (!softdevice_handler_is_enabled())
#endif
{
nrf_clock_lf_src_set((nrf_clock_lfclk_t)CLOCK_CONFIG_LF_SRC);
}
#if CALIBRATION_SUPPORT
m_clock_cb.cal_state = CAL_STATE_IDLE;
#endif
m_clock_cb.module_initialized = true;
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
(uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
}
void nrf_drv_clock_uninit(void)
{
ASSERT(m_clock_cb.module_initialized);
nrf_drv_common_clock_irq_disable();
nrf_clock_int_disable(0xFFFFFFFF);
lfclk_stop();
hfclk_stop();
m_clock_cb.module_initialized = false;
NRF_LOG_INFO("Uninitialized.\r\n");
}
static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head,
nrf_drv_clock_handler_item_t * p_item)
{
nrf_drv_clock_handler_item_t * p_next = *p_head;
while(p_next)
{
if(p_next == p_item)
{
return;
}
p_next = p_next->p_next;
}
p_item->p_next = (*p_head ? *p_head : NULL);
*p_head = p_item;
}
static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head)
{
nrf_drv_clock_handler_item_t * p_item = *p_head;
if (p_item)
{
*p_head = p_item->p_next;
}
return p_item;
}
void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
{
ASSERT(m_clock_cb.module_initialized);
if (m_clock_cb.lfclk_on)
{
if (p_handler_item)
{
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
}
CRITICAL_REGION_ENTER();
++(m_clock_cb.lfclk_requests);
CRITICAL_REGION_EXIT();
}
else
{
CRITICAL_REGION_ENTER();
if (p_handler_item)
{
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head,
p_handler_item);
}
if (m_clock_cb.lfclk_requests == 0)
{
lfclk_start();
}
++(m_clock_cb.lfclk_requests);
CRITICAL_REGION_EXIT();
}
ASSERT(m_clock_cb.lfclk_requests > 0);
}
void nrf_drv_clock_lfclk_release(void)
{
ASSERT(m_clock_cb.module_initialized);
ASSERT(m_clock_cb.lfclk_requests > 0);
CRITICAL_REGION_ENTER();
--(m_clock_cb.lfclk_requests);
if (m_clock_cb.lfclk_requests == 0)
{
lfclk_stop();
}
CRITICAL_REGION_EXIT();
}
bool nrf_drv_clock_lfclk_is_running(void)
{
ASSERT(m_clock_cb.module_initialized);
#ifdef SOFTDEVICE_PRESENT
if (softdevice_handler_is_enabled())
{
return true;
}
#endif // SOFTDEVICE_PRESENT
return nrf_clock_lf_is_running();
}
void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
{
ASSERT(m_clock_cb.module_initialized);
if (m_clock_cb.hfclk_on)
{
if (p_handler_item)
{
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
CRITICAL_REGION_ENTER();
++(m_clock_cb.hfclk_requests);
CRITICAL_REGION_EXIT();
}
else
{
CRITICAL_REGION_ENTER();
if (p_handler_item)
{
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head,
p_handler_item);
}
if (m_clock_cb.hfclk_requests == 0)
{
hfclk_start();
}
++(m_clock_cb.hfclk_requests);
CRITICAL_REGION_EXIT();
}
ASSERT(m_clock_cb.hfclk_requests > 0);
}
void nrf_drv_clock_hfclk_release(void)
{
ASSERT(m_clock_cb.module_initialized);
ASSERT(m_clock_cb.hfclk_requests > 0);
CRITICAL_REGION_ENTER();
--(m_clock_cb.hfclk_requests);
if (m_clock_cb.hfclk_requests == 0)
{
hfclk_stop();
}
CRITICAL_REGION_EXIT();
}
bool nrf_drv_clock_hfclk_is_running(void)
{
ASSERT(m_clock_cb.module_initialized);
#ifdef SOFTDEVICE_PRESENT
if (softdevice_handler_is_enabled())
{
uint32_t is_running;
UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running));
return (is_running ? true : false);
}
#endif // SOFTDEVICE_PRESENT
return nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY);
}
#if CALIBRATION_SUPPORT
static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event)
{
if (m_clock_cb.cal_state == CAL_STATE_ABORT)
{
nrf_drv_clock_hfclk_release();
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
}
}
else
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE);
nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK);
m_clock_cb.cal_state = CAL_STATE_CAL;
nrf_clock_task_trigger(NRF_CLOCK_TASK_CAL);
}
}
#endif // CALIBRATION_SUPPORT
ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE);
if (m_clock_cb.lfclk_on == false)
{
err_code = NRF_ERROR_INVALID_STATE;
}
else if (m_clock_cb.cal_state == CAL_STATE_IDLE)
{
m_clock_cb.cal_done_handler = handler;
m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started;
if (interval == 0)
{
m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ;
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
}
else
{
m_clock_cb.cal_state = CAL_STATE_CT;
nrf_clock_cal_timer_timeout_set(interval);
nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO);
nrf_clock_int_enable(NRF_CLOCK_INT_CTTO_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTART);
}
}
else
{
err_code = NRF_ERROR_BUSY;
}
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#else
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
ret_code_t nrf_drv_clock_calibration_abort(void)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
CRITICAL_REGION_ENTER();
switch (m_clock_cb.cal_state)
{
case CAL_STATE_CT:
nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTOP);
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
}
break;
case CAL_STATE_HFCLK_REQ:
/* fall through. */
case CAL_STATE_CAL:
m_clock_cb.cal_state = CAL_STATE_ABORT;
break;
default:
break;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#else
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating)
{
ret_code_t err_code = NRF_SUCCESS;
#if CALIBRATION_SUPPORT
ASSERT(m_clock_cb.module_initialized);
*p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE);
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#else
err_code = NRF_ERROR_FORBIDDEN;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
return err_code;
#endif // CALIBRATION_SUPPORT
}
__STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type)
{
nrf_drv_clock_handler_item_t **p_head;
if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED)
{
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head;
}
else
{
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head;
}
while (1)
{
nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head);
if (!p_item)
{
break;
}
p_item->event_handler(evt_type);
}
}
#if NRF_DRV_COMMON_POWER_CLOCK_ISR
void nrf_drv_clock_onIRQ(void)
#else
void POWER_CLOCK_IRQHandler(void)
#endif
{
if (nrf_clock_event_check(NRF_CLOCK_EVENT_HFCLKSTARTED))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_HFCLKSTARTED));
nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK);
m_clock_cb.hfclk_on = true;
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
if (nrf_clock_event_check(NRF_CLOCK_EVENT_LFCLKSTARTED))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_LFCLKSTARTED));
nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK);
m_clock_cb.lfclk_on = true;
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
}
#if CALIBRATION_SUPPORT
if (nrf_clock_event_check(NRF_CLOCK_EVENT_CTTO))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_CTTO));
nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK);
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
}
if (nrf_clock_event_check(NRF_CLOCK_EVENT_DONE))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_DONE));
nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK);
nrf_drv_clock_hfclk_release();
bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT);
m_clock_cb.cal_state = CAL_STATE_IDLE;
if (m_clock_cb.cal_done_handler)
{
m_clock_cb.cal_done_handler(aborted ?
NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE);
}
}
#endif // CALIBRATION_SUPPORT
}
#ifdef SOFTDEVICE_PRESENT
void nrf_drv_clock_on_soc_event(uint32_t evt_id)
{
if (evt_id == NRF_EVT_HFCLKSTARTED)
{
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
}
}
void nrf_drv_clock_on_sd_enable(void)
{
CRITICAL_REGION_ENTER();
/* Make sure that nrf_drv_clock module is initialized */
if (!m_clock_cb.module_initialized)
{
(void)nrf_drv_clock_init();
}
/* SD is one of the LFCLK requesters, but it will enable it by itself. */
++(m_clock_cb.lfclk_requests);
m_clock_cb.lfclk_on = true;
CRITICAL_REGION_EXIT();
}
void nrf_drv_clock_on_sd_disable(void)
{
/* Reinit interrupts */
ASSERT(m_clock_cb.module_initialized);
nrf_drv_common_irq_enable(POWER_CLOCK_IRQn, CLOCK_CONFIG_IRQ_PRIORITY);
/* SD leaves LFCLK enabled - disable it if it is no longer required. */
nrf_drv_clock_lfclk_release();
}
#endif // SOFTDEVICE_PRESENT
#undef NRF_CLOCK_LFCLK_RC
#undef NRF_CLOCK_LFCLK_Xtal
#undef NRF_CLOCK_LFCLK_Synth
#endif // NRF_MODULE_ENABLED(CLOCK)

View File

@@ -0,0 +1,315 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_DRV_CLOCK_H__
#define NRF_DRV_CLOCK_H__
#include <stdbool.h>
#include <stdint.h>
#include "sdk_errors.h"
#include "nrf_assert.h"
#include "nrf_clock.h"
#include "sdk_config.h"
#include "nrf_drv_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
*
* @addtogroup nrf_clock Clock HAL and driver
* @ingroup nrf_drivers
* @brief Clock APIs.
* @details The clock HAL provides basic APIs for accessing the registers of the clock.
* The clock driver provides APIs on a higher level.
*
* @defgroup nrf_drv_clock Clock driver
* @{
* @ingroup nrf_clock
* @brief Driver for managing the low-frequency clock (LFCLK) and the high-frequency clock (HFCLK).
*/
/**
* @brief Clock events.
*/
typedef enum
{
NRF_DRV_CLOCK_EVT_HFCLK_STARTED, ///< HFCLK has been started.
NRF_DRV_CLOCK_EVT_LFCLK_STARTED, ///< LFCLK has been started.
NRF_DRV_CLOCK_EVT_CAL_DONE, ///< Calibration is done.
NRF_DRV_CLOCK_EVT_CAL_ABORTED, ///< Calibration has been aborted.
} nrf_drv_clock_evt_type_t;
/**
* @brief Clock event handler.
*
* @param[in] event Event.
*/
typedef void (*nrf_drv_clock_event_handler_t)(nrf_drv_clock_evt_type_t event);
// Forward declaration of the nrf_drv_clock_handler_item_t type.
typedef struct nrf_drv_clock_handler_item_s nrf_drv_clock_handler_item_t;
struct nrf_drv_clock_handler_item_s
{
nrf_drv_clock_handler_item_t * p_next; ///< A pointer to the next handler that should be called when the clock is started.
nrf_drv_clock_event_handler_t event_handler; ///< Function to be called when the clock is started.
};
/**
* @brief Function for checking if driver is already initialized
*
* This function is used to check whatever common POWER_CLOCK common interrupt
* should be disabled or not if @ref nrf_drv_power tries to disable the interrupt.
*
* @retval true Driver is initialized
* @retval false Driver is uninitialized
*/
bool nrf_drv_clock_init_check(void);
/**
* @brief Function for initializing the nrf_drv_clock module.
*
* After initialization, the module is in power off state (clocks are not requested).
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_MODULE_ALREADY_INITIALIZED If the driver was already initialized.
*/
ret_code_t nrf_drv_clock_init(void);
/**
* @brief Function for uninitializing the clock module.
*
*/
void nrf_drv_clock_uninit(void);
/**
* @brief Function for requesting the LFCLK.
*
* The low-frequency clock can be requested by different modules
* or contexts. The driver ensures that the clock will be started only when it is requested
* the first time. If the clock is not ready but it was already started, the handler item that is
* provided as an input parameter is added to the list of handlers that will be notified
* when the clock is started. If the clock is already enabled, user callback is called from the
* current context.
*
* The first request will start the selected LFCLK source. If an event handler is
* provided, it will be called once the LFCLK is started. If the LFCLK was already started at this
* time, the event handler will be called from the context of this function. Additionally,
* the @ref nrf_drv_clock_lfclk_is_running function can be polled to check if the clock has started.
*
* @note When a SoftDevice is enabled, the LFCLK is always running and the driver cannot control it.
*
* @note The handler item provided by the user cannot be an automatic variable.
*
* @param[in] p_handler_item A pointer to the event handler structure.
*/
void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item);
/**
* @brief Function for releasing the LFCLK.
*
* If there are no more requests, the LFCLK source will be stopped.
*
* @note When a SoftDevice is enabled, the LFCLK is always running.
*/
void nrf_drv_clock_lfclk_release(void);
/**
* @brief Function for checking the LFCLK state.
*
* @retval true If the LFCLK is running.
* @retval false If the LFCLK is not running.
*/
bool nrf_drv_clock_lfclk_is_running(void);
/**
* @brief Function for requesting the high-accuracy source HFCLK.
*
* The high-accuracy source
* can be requested by different modules or contexts. The driver ensures that the high-accuracy
* clock will be started only when it is requested the first time. If the clock is not ready
* but it was already started, the handler item that is provided as an input parameter is added
* to the list of handlers that will be notified when the clock is started.
*
* If an event handler is provided, it will be called once the clock is started. If the clock was already
* started at this time, the event handler will be called from the context of this function. Additionally,
* the @ref nrf_drv_clock_hfclk_is_running function can be polled to check if the clock has started.
*
* @note If a SoftDevice is running, the clock is managed by the SoftDevice and all requests are handled by
* the SoftDevice. This function cannot be called from all interrupt priority levels in that case.
* @note The handler item provided by the user cannot be an automatic variable.
*
* @param[in] p_handler_item A pointer to the event handler structure.
*/
void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item);
/**
* @brief Function for releasing the high-accuracy source HFCLK.
*
* If there are no more requests, the high-accuracy source will be released.
*/
void nrf_drv_clock_hfclk_release(void);
/**
* @brief Function for checking the HFCLK state.
*
* @retval true If the HFCLK is running (for \nRFXX XTAL source).
* @retval false If the HFCLK is not running.
*/
bool nrf_drv_clock_hfclk_is_running(void);
/**
* @brief Function for starting a single calibration process.
*
* This function can also delay the start of calibration by a user-specified value. The delay will use
* a low-power timer that is part of the CLOCK module. @ref nrf_drv_clock_is_calibrating can be called to
* check if calibration is still in progress. If a handler is provided, the user can be notified when
* calibration is completed. The ext calibration can be started from the handler context.
*
* The calibration process consists of three phases:
* - Delay (optional)
* - Requesting the high-accuracy HFCLK
* - Hardware-supported calibration
*
* @param[in] delay Time after which the calibration will be started (in 0.25 s units).
* @param[in] handler NULL or user function to be called when calibration is completed or aborted.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator.
* @retval NRF_ERROR_INVALID_STATE If the low-frequency clock is off.
* @retval NRF_ERROR_BUSY If calibration is in progress.
*/
ret_code_t nrf_drv_clock_calibration_start(uint8_t delay, nrf_drv_clock_event_handler_t handler);
/**
* @brief Function for aborting calibration.
*
* This function aborts on-going calibration. If calibration was started, it cannot be stopped. If a handler
* was provided by @ref nrf_drv_clock_calibration_start, this handler will be called once
* aborted calibration is completed. @ref nrf_drv_clock_is_calibrating can also be used to check
* if the system is calibrating.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator.
*/
ret_code_t nrf_drv_clock_calibration_abort(void);
/**
* @brief Function for checking if calibration is in progress.
*
* This function indicates that the system is
* in calibration if it is in any of the calibration process phases (see @ref nrf_drv_clock_calibration_start).
*
* @param[out] p_is_calibrating True if calibration is in progress, false if not.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator.
*/
ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating);
/**@brief Function for returning a requested task address for the clock driver module.
*
* @param[in] task One of the peripheral tasks.
*
* @return Task address.
*/
__STATIC_INLINE uint32_t nrf_drv_clock_ppi_task_addr(nrf_clock_task_t task);
/**@brief Function for returning a requested event address for the clock driver module.
*
* @param[in] event One of the peripheral events.
*
* @return Event address.
*/
__STATIC_INLINE uint32_t nrf_drv_clock_ppi_event_addr(nrf_clock_event_t event);
#ifdef SOFTDEVICE_PRESENT
/**
* @brief Function called by the SoftDevice handler if an @ref nrf_soc event is received from the SoftDevice.
*
* @param[in] evt_id One of NRF_SOC_EVTS values.
*/
void nrf_drv_clock_on_soc_event(uint32_t evt_id);
/**
* @brief Function called by the SoftDevice handler when the SoftDevice has been enabled.
*
* This function is called just after the SoftDevice has been properly enabled.
* Its main purpose is to mark that LFCLK has been requested by SD.
*/
void nrf_drv_clock_on_sd_enable(void);
/**
* @brief Function called by the SoftDevice handler when the SoftDevice has been disabled.
*
* This function is called just after the SoftDevice has been properly disabled.
* It has two purposes:
* 1. Releases the LFCLK from the SD.
* 2. Reinitializes an interrupt after the SD releases POWER_CLOCK_IRQ.
*/
void nrf_drv_clock_on_sd_disable(void);
#endif
/**
*@}
**/
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE uint32_t nrf_drv_clock_ppi_task_addr(nrf_clock_task_t task)
{
return nrf_clock_task_address_get(task);
}
__STATIC_INLINE uint32_t nrf_drv_clock_ppi_event_addr(nrf_clock_event_t event)
{
return nrf_clock_event_address_get(event);
}
#endif //SUPPRESS_INLINE_IMPLEMENTATION
/*lint --flb "Leave library region" */
#ifdef __cplusplus
}
#endif
#endif // NRF_CLOCK_H__