mirror of
https://github.com/jam422470459/EPD-nRF52-hema213.git
synced 2025-12-18 22:33:20 +08:00
move components to SDK dir
This commit is contained in:
663
SDK/12.3.0_d7731ad/components/ble/ble_dtm/ble_dtm.c
Normal file
663
SDK/12.3.0_d7731ad/components/ble/ble_dtm/ble_dtm.c
Normal file
@@ -0,0 +1,663 @@
|
||||
/**
|
||||
* Copyright (c) 2012 - 2017, Nordic Semiconductor ASA
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form, except as embedded into a Nordic
|
||||
* Semiconductor ASA integrated circuit in a product or a software update for
|
||||
* such product, must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other
|
||||
* materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* 4. This software, with or without modification, must only be used with a
|
||||
* Nordic Semiconductor ASA integrated circuit.
|
||||
*
|
||||
* 5. Any software provided in binary form under this license must not be reverse
|
||||
* engineered, decompiled, modified and/or disassembled.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||||
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
*/
|
||||
#include "sdk_common.h"
|
||||
#if NRF_MODULE_ENABLED(BLE_DTM)
|
||||
#include "ble_dtm.h"
|
||||
#include "ble_dtm_hw.h"
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "nrf.h"
|
||||
|
||||
#define DTM_HEADER_OFFSET 0 /**< Index where the header of the pdu is located. */
|
||||
#define DTM_HEADER_SIZE 2 /**< Size of PDU header. */
|
||||
#define DTM_PAYLOAD_MAX_SIZE 255 /**< Maximum payload size allowed during dtm execution. */
|
||||
#define DTM_LENGTH_OFFSET (DTM_HEADER_OFFSET + 1) /**< Index where the length of the payload is encoded. */
|
||||
#define DTM_PDU_MAX_MEMORY_SIZE (DTM_HEADER_SIZE + DTM_PAYLOAD_MAX_SIZE) /**< Maximum PDU size allowed during dtm execution. */
|
||||
#define DTM_ON_AIR_OVERHEAD_SIZE 10 /**< Size of the packet on air without the payload (preamble + sync word + type + RFU + length + CRC). */
|
||||
|
||||
#define RX_MODE true /**< Constant defining RX mode for radio during dtm test. */
|
||||
#define TX_MODE false /**< Constant defining TX mode for radio during dtm test. */
|
||||
|
||||
#define PHYS_CH_MAX 39 /**< Maximum number of valid channels in BLE. */
|
||||
|
||||
// Values that for now are "constants" - they could be configured by a function setting them,
|
||||
// but most of these are set by the BLE DTM standard, so changing them is not relevant.
|
||||
#define RFPHY_TEST_0X0F_REF_PATTERN 0x0f /**< RF-PHY test packet patterns, for the repeated octet packets. */
|
||||
#define RFPHY_TEST_0X55_REF_PATTERN 0x55 /**< RF-PHY test packet patterns, for the repeated octet packets. */
|
||||
|
||||
#define PRBS9_CONTENT {0xFF, 0xC1, 0xFB, 0xE8, 0x4C, 0x90, 0x72, 0x8B, \
|
||||
0xE7, 0xB3, 0x51, 0x89, 0x63, 0xAB, 0x23, 0x23, \
|
||||
0x02, 0x84, 0x18, 0x72, 0xAA, 0x61, 0x2F, 0x3B, \
|
||||
0x51, 0xA8, 0xE5, 0x37, 0x49, 0xFB, 0xC9, 0xCA, \
|
||||
0x0C, 0x18, 0x53, 0x2C, 0xFD, 0x45, 0xE3, 0x9A, \
|
||||
0xE6, 0xF1, 0x5D, 0xB0, 0xB6, 0x1B, 0xB4, 0xBE, \
|
||||
0x2A, 0x50, 0xEA, 0xE9, 0x0E, 0x9C, 0x4B, 0x5E, \
|
||||
0x57, 0x24, 0xCC, 0xA1, 0xB7, 0x59, 0xB8, 0x87, \
|
||||
0xFF, 0xE0, 0x7D, 0x74, 0x26, 0x48, 0xB9, 0xC5, \
|
||||
0xF3, 0xD9, 0xA8, 0xC4, 0xB1, 0xD5, 0x91, 0x11, \
|
||||
0x01, 0x42, 0x0C, 0x39, 0xD5, 0xB0, 0x97, 0x9D, \
|
||||
0x28, 0xD4, 0xF2, 0x9B, 0xA4, 0xFD, 0x64, 0x65, \
|
||||
0x06, 0x8C, 0x29, 0x96, 0xFE, 0xA2, 0x71, 0x4D, \
|
||||
0xF3, 0xF8, 0x2E, 0x58, 0xDB, 0x0D, 0x5A, 0x5F, \
|
||||
0x15, 0x28, 0xF5, 0x74, 0x07, 0xCE, 0x25, 0xAF, \
|
||||
0x2B, 0x12, 0xE6, 0xD0, 0xDB, 0x2C, 0xDC, 0xC3, \
|
||||
0x7F, 0xF0, 0x3E, 0x3A, 0x13, 0xA4, 0xDC, 0xE2, \
|
||||
0xF9, 0x6C, 0x54, 0xE2, 0xD8, 0xEA, 0xC8, 0x88, \
|
||||
0x00, 0x21, 0x86, 0x9C, 0x6A, 0xD8, 0xCB, 0x4E, \
|
||||
0x14, 0x6A, 0xF9, 0x4D, 0xD2, 0x7E, 0xB2, 0x32, \
|
||||
0x03, 0xC6, 0x14, 0x4B, 0x7F, 0xD1, 0xB8, 0xA6, \
|
||||
0x79, 0x7C, 0x17, 0xAC, 0xED, 0x06, 0xAD, 0xAF, \
|
||||
0x0A, 0x94, 0x7A, 0xBA, 0x03, 0xE7, 0x92, 0xD7, \
|
||||
0x15, 0x09, 0x73, 0xE8, 0x6D, 0x16, 0xEE, 0xE1, \
|
||||
0x3F, 0x78, 0x1F, 0x9D, 0x09, 0x52, 0x6E, 0xF1, \
|
||||
0x7C, 0x36, 0x2A, 0x71, 0x6C, 0x75, 0x64, 0x44, \
|
||||
0x80, 0x10, 0x43, 0x4E, 0x35, 0xEC, 0x65, 0x27, \
|
||||
0x0A, 0xB5, 0xFC, 0x26, 0x69, 0x3F, 0x59, 0x99, \
|
||||
0x01, 0x63, 0x8A, 0xA5, 0xBF, 0x68, 0x5C, 0xD3, \
|
||||
0x3C, 0xBE, 0x0B, 0xD6, 0x76, 0x83, 0xD6, 0x57, \
|
||||
0x05, 0x4A, 0x3D, 0xDD, 0x81, 0x73, 0xC9, 0xEB, \
|
||||
0x8A, 0x84, 0x39, 0xF4, 0x36, 0x0B, 0xF7} /**< The PRBS9 sequence used as packet payload.
|
||||
The bytes in the sequence is in the right order, but the bits of each byte in the array is reverse.
|
||||
of that found by running the PRBS9 algorithm. This is because of the endianess of the nRF5 radio. */
|
||||
|
||||
/**@brief Structure holding the PDU used for transmitting/receiving a PDU.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint8_t content[DTM_HEADER_SIZE + DTM_PAYLOAD_MAX_SIZE]; /**< PDU packet content. */
|
||||
} pdu_type_t;
|
||||
|
||||
/**@brief States used for the DTM test implementation.
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
STATE_UNINITIALIZED, /**< The DTM is uninitialized. */
|
||||
STATE_IDLE, /**< State when system has just initialized, or current test has completed. */
|
||||
STATE_TRANSMITTER_TEST, /**< State used when a DTM Transmission test is running. */
|
||||
STATE_CARRIER_TEST, /**< State used when a DTM Carrier test is running (Vendor specific test). */
|
||||
STATE_RECEIVER_TEST /**< State used when a DTM Receive test is running. */
|
||||
} state_t;
|
||||
|
||||
// Internal variables set as side effects of commands or events.
|
||||
static state_t m_state = STATE_UNINITIALIZED; /**< Current machine state. */
|
||||
static uint16_t m_rx_pkt_count; /**< Number of valid packets received. */
|
||||
static pdu_type_t m_pdu; /**< PDU to be sent. */
|
||||
static uint16_t m_event; /**< current command status - initially "ok", may be set if error detected, or to packet count. */
|
||||
static bool m_new_event; /**< Command has been processed - number of not yet reported event bytes. */
|
||||
static uint32_t m_packet_length; /**< Payload length of transmitted PDU, bits 2:7 of 16-bit dtm command. */
|
||||
static dtm_pkt_type_t m_packet_type; /**< Bits 0..1 of 16-bit transmit command, or 0xFFFFFFFF. */
|
||||
static dtm_freq_t m_phys_ch; /**< 0..39 physical channel number (base 2402 MHz, Interval 2 MHz), bits 8:13 of 16-bit dtm command. */
|
||||
static uint32_t m_current_time = 0; /**< Counter for interrupts from timer to ensure that the 2 bytes forming a DTM command are received within the time window. */
|
||||
|
||||
// Nordic specific configuration values (not defined by BLE standard).
|
||||
// Definition of initial values found in ble_dtm.h
|
||||
static int32_t m_tx_power = DEFAULT_TX_POWER; /**< TX power for transmission test, default to maximum value (+4 dBm). */
|
||||
static NRF_TIMER_Type * mp_timer = DEFAULT_TIMER; /**< Timer to be used. */
|
||||
static IRQn_Type m_timer_irq = DEFAULT_TIMER_IRQn; /**< which interrupt line to clear on every timeout */
|
||||
|
||||
static uint8_t const m_prbs_content[] = PRBS9_CONTENT; /**< Pseudo-random bit sequence defined by the BLE standard. */
|
||||
static uint8_t m_packetHeaderLFlen = 8; /**< Length of length field in packet Header (in bits). */
|
||||
static uint8_t m_packetHeaderS0len = 1; /**< Length of S0 field in packet Header (in bytes). */
|
||||
static uint8_t m_packetHeaderS1len = 0; /**< Length of S1 field in packet Header (in bits). */
|
||||
static uint8_t m_crcConfSkipAddr = 1; /**< Leave packet address field out of CRC calculation. */
|
||||
static uint8_t m_static_length = 0; /**< Number of bytes sent in addition to the var.length payload. */
|
||||
static uint32_t m_balen = 3; /**< Base address length in bytes. */
|
||||
static uint32_t m_endian = RADIO_PCNF1_ENDIAN_Little; /**< On air endianess of packet, this applies to the S0, LENGTH, S1 and the PAYLOAD fields. */
|
||||
static uint32_t m_whitening = RADIO_PCNF1_WHITEEN_Disabled; /**< Whitening disabled. */
|
||||
static uint8_t m_crcLength = RADIO_CRCCNF_LEN_Three; /**< CRC Length (in bytes). */
|
||||
static uint32_t m_address = 0x71764129; /**< Address. */
|
||||
static uint32_t m_crc_poly = 0x0000065B; /**< CRC polynomial. */
|
||||
static uint32_t m_crc_init = 0x00555555; /**< Initial value for CRC calculation. */
|
||||
static uint8_t m_radio_mode = RADIO_MODE_MODE_Ble_1Mbit; /**< nRF51 specific radio mode value. */
|
||||
static uint32_t m_txIntervaluS = 2500; /**< Time between start of Tx packets (in uS). */
|
||||
|
||||
|
||||
/**@brief Function for verifying that a received PDU has the expected structure and content.
|
||||
*/
|
||||
static bool check_pdu(void)
|
||||
{
|
||||
uint8_t k; // Byte pointer for running through PDU payload
|
||||
uint8_t pattern; // Repeating octet value in payload
|
||||
dtm_pkt_type_t pdu_packet_type; // Note: PDU packet type is a 4-bit field in HCI, but 2 bits in BLE DTM
|
||||
uint32_t length = 0;
|
||||
|
||||
pdu_packet_type = (dtm_pkt_type_t)(m_pdu.content[DTM_HEADER_OFFSET] & 0x0F);
|
||||
length = m_pdu.content[DTM_LENGTH_OFFSET];
|
||||
|
||||
if ((pdu_packet_type > (dtm_pkt_type_t)PACKET_TYPE_MAX) || (length > DTM_PAYLOAD_MAX_SIZE))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
if (pdu_packet_type == DTM_PKT_PRBS9)
|
||||
{
|
||||
// Payload does not consist of one repeated octet; must compare ir with entire block into
|
||||
return (memcmp(m_pdu.content + DTM_HEADER_SIZE, m_prbs_content, length) == 0);
|
||||
}
|
||||
|
||||
if (pdu_packet_type == DTM_PKT_0X0F)
|
||||
{
|
||||
pattern = RFPHY_TEST_0X0F_REF_PATTERN;
|
||||
}
|
||||
else
|
||||
{
|
||||
pattern = RFPHY_TEST_0X55_REF_PATTERN;
|
||||
}
|
||||
|
||||
for (k = 0; k < length; k++)
|
||||
{
|
||||
// Check repeated pattern filling the PDU payload
|
||||
if (m_pdu.content[k + 2] != pattern)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for turning off the radio after a test.
|
||||
* Also called after test done, to be ready for next test.
|
||||
*/
|
||||
static void radio_reset(void)
|
||||
{
|
||||
NRF_PPI->CHENCLR = PPI_CHENCLR_CH0_Msk | PPI_CHENCLR_CH1_Msk;
|
||||
|
||||
NRF_RADIO->SHORTS = 0;
|
||||
NRF_RADIO->EVENTS_DISABLED = 0;
|
||||
NRF_RADIO->TASKS_DISABLE = 1;
|
||||
|
||||
while (NRF_RADIO->EVENTS_DISABLED == 0)
|
||||
{
|
||||
// Do nothing
|
||||
}
|
||||
|
||||
NRF_RADIO->EVENTS_DISABLED = 0;
|
||||
NRF_RADIO->TASKS_RXEN = 0;
|
||||
NRF_RADIO->TASKS_TXEN = 0;
|
||||
|
||||
m_rx_pkt_count = 0;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for initializing the radio for DTM.
|
||||
*/
|
||||
static uint32_t radio_init(void)
|
||||
{
|
||||
if(dtm_radio_validate(m_tx_power, m_radio_mode) != DTM_SUCCESS)
|
||||
{
|
||||
return DTM_ERROR_ILLEGAL_CONFIGURATION;
|
||||
}
|
||||
|
||||
// Turn off radio before configuring it
|
||||
radio_reset();
|
||||
|
||||
NRF_RADIO->TXPOWER = m_tx_power;
|
||||
NRF_RADIO->MODE = m_radio_mode << RADIO_MODE_MODE_Pos;
|
||||
|
||||
// Set the access address, address0/prefix0 used for both Rx and Tx address
|
||||
NRF_RADIO->PREFIX0 &= ~RADIO_PREFIX0_AP0_Msk;
|
||||
NRF_RADIO->PREFIX0 |= (m_address >> 24) & RADIO_PREFIX0_AP0_Msk;
|
||||
NRF_RADIO->BASE0 = m_address << 8;
|
||||
NRF_RADIO->RXADDRESSES = RADIO_RXADDRESSES_ADDR0_Enabled << RADIO_RXADDRESSES_ADDR0_Pos;
|
||||
NRF_RADIO->TXADDRESS = (0x00 << RADIO_TXADDRESS_TXADDRESS_Pos) & RADIO_TXADDRESS_TXADDRESS_Msk;
|
||||
|
||||
// Configure CRC calculation
|
||||
NRF_RADIO->CRCCNF = (m_crcConfSkipAddr << RADIO_CRCCNF_SKIP_ADDR_Pos) |
|
||||
(m_crcLength << RADIO_CRCCNF_LEN_Pos);
|
||||
|
||||
NRF_RADIO->PCNF0 = (m_packetHeaderS1len << RADIO_PCNF0_S1LEN_Pos) |
|
||||
(m_packetHeaderS0len << RADIO_PCNF0_S0LEN_Pos) |
|
||||
(m_packetHeaderLFlen << RADIO_PCNF0_LFLEN_Pos);
|
||||
|
||||
NRF_RADIO->PCNF1 = (m_whitening << RADIO_PCNF1_WHITEEN_Pos) |
|
||||
(m_endian << RADIO_PCNF1_ENDIAN_Pos) |
|
||||
(m_balen << RADIO_PCNF1_BALEN_Pos) |
|
||||
(m_static_length << RADIO_PCNF1_STATLEN_Pos) |
|
||||
(DTM_PAYLOAD_MAX_SIZE << RADIO_PCNF1_MAXLEN_Pos);
|
||||
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for preparing the radio. At start of each test: Turn off RF, clear interrupt flags of RF, initialize the radio
|
||||
* at given RF channel.
|
||||
*
|
||||
*@param[in] rx boolean indicating if radio should be prepared in rx mode (true) or tx mode.
|
||||
*/
|
||||
static void radio_prepare(bool rx)
|
||||
{
|
||||
dtm_turn_off_test();
|
||||
NRF_RADIO->CRCPOLY = m_crc_poly;
|
||||
NRF_RADIO->CRCINIT = m_crc_init;
|
||||
NRF_RADIO->FREQUENCY = (m_phys_ch << 1) + 2; // Actual frequency (MHz): 2400 + register value
|
||||
NRF_RADIO->PACKETPTR = (uint32_t)&m_pdu; // Setting packet pointer will start the radio
|
||||
NRF_RADIO->EVENTS_READY = 0;
|
||||
NRF_RADIO->SHORTS = (1 << RADIO_SHORTS_READY_START_Pos) | // Shortcut between READY event and START task
|
||||
(1 << RADIO_SHORTS_END_DISABLE_Pos); // Shortcut between END event and DISABLE task
|
||||
|
||||
if (rx)
|
||||
{
|
||||
NRF_RADIO->EVENTS_END = 0;
|
||||
NRF_RADIO->TASKS_RXEN = 1; // shorts will start radio in RX mode when it is ready
|
||||
}
|
||||
else // tx
|
||||
{
|
||||
NRF_RADIO->TXPOWER = m_tx_power;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for terminating the ongoing test (if any) and closing down the radio.
|
||||
*/
|
||||
static void dtm_test_done(void)
|
||||
{
|
||||
dtm_turn_off_test();
|
||||
NRF_PPI->CHENCLR = 0x01;
|
||||
NRF_PPI->CH[0].EEP = 0; // Break connection from timer to radio to stop transmit loop
|
||||
NRF_PPI->CH[0].TEP = 0;
|
||||
|
||||
radio_reset();
|
||||
m_state = STATE_IDLE;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for configuring the timer for 625us cycle time.
|
||||
*/
|
||||
static uint32_t timer_init(void)
|
||||
{
|
||||
// Use 16MHz from external crystal
|
||||
// This could be customized for RC/Xtal, or even to use a 32 kHz crystal
|
||||
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
|
||||
NRF_CLOCK->TASKS_HFCLKSTART = 1;
|
||||
|
||||
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0)
|
||||
{
|
||||
// Do nothing while waiting for the clock to start
|
||||
}
|
||||
|
||||
mp_timer->TASKS_STOP = 1; // Stop timer, if it was running
|
||||
mp_timer->TASKS_CLEAR = 1;
|
||||
mp_timer->MODE = TIMER_MODE_MODE_Timer; // Timer mode (not counter)
|
||||
mp_timer->EVENTS_COMPARE[0] = 0; // clean up possible old events
|
||||
mp_timer->EVENTS_COMPARE[1] = 0;
|
||||
mp_timer->EVENTS_COMPARE[2] = 0;
|
||||
mp_timer->EVENTS_COMPARE[3] = 0;
|
||||
|
||||
// Timer is polled, but enable the compare0 interrupt in order to wakeup from CPU sleep
|
||||
mp_timer->INTENSET = TIMER_INTENSET_COMPARE0_Msk;
|
||||
mp_timer->SHORTS = 1 << TIMER_SHORTS_COMPARE0_CLEAR_Pos; // Clear the count every time timer reaches the CCREG0 count
|
||||
mp_timer->PRESCALER = 4; // Input clock is 16MHz, timer clock = 2 ^ prescale -> interval 1us
|
||||
mp_timer->CC[0] = m_txIntervaluS; // 625uS with 1MHz clock to the timer
|
||||
mp_timer->CC[1] = UART_POLL_CYCLE; // Depends on the baud rate of the UART. Default baud rate of 19200 will result in a 260uS time with 1MHz clock to the timer
|
||||
mp_timer->TASKS_START = 1; // Start the timer - it will be running continuously
|
||||
m_current_time = 0;
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for handling vendor specific commands.
|
||||
* Used when packet type is set to Vendor specific.
|
||||
* The length field is used for encoding vendor specific command.
|
||||
* The frequency field is used for encoding vendor specific options to the command.
|
||||
*
|
||||
* @param[in] vendor_cmd Vendor specific command to be executed.
|
||||
* @param[in] vendor_option Vendor specific option to the vendor command.
|
||||
*
|
||||
* @return DTM_SUCCESS or one of the DTM_ERROR_ values
|
||||
*/
|
||||
static uint32_t dtm_vendor_specific_pkt(uint32_t vendor_cmd, dtm_freq_t vendor_option)
|
||||
{
|
||||
switch (vendor_cmd)
|
||||
{
|
||||
// nRFgo Studio uses CARRIER_TEST_STUDIO to indicate a continuous carrier without
|
||||
// a modulated signal.
|
||||
case CARRIER_TEST:
|
||||
case CARRIER_TEST_STUDIO:
|
||||
// Not a packet type, but used to indicate that a continuous carrier signal
|
||||
// should be transmitted by the radio.
|
||||
radio_prepare(TX_MODE);
|
||||
|
||||
dtm_constant_carrier();
|
||||
|
||||
// Shortcut between READY event and START task
|
||||
NRF_RADIO->SHORTS = 1 << RADIO_SHORTS_READY_START_Pos;
|
||||
|
||||
// Shortcut will start radio in Tx mode when it is ready
|
||||
NRF_RADIO->TASKS_TXEN = 1;
|
||||
m_state = STATE_CARRIER_TEST;
|
||||
break;
|
||||
|
||||
case SET_TX_POWER:
|
||||
if (!dtm_set_txpower(vendor_option))
|
||||
{
|
||||
return DTM_ERROR_ILLEGAL_CONFIGURATION;
|
||||
}
|
||||
break;
|
||||
|
||||
case SELECT_TIMER:
|
||||
if (!dtm_set_timer(vendor_option))
|
||||
{
|
||||
return DTM_ERROR_ILLEGAL_CONFIGURATION;
|
||||
}
|
||||
break;
|
||||
}
|
||||
// Event code is unchanged, successful
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
uint32_t dtm_init(void)
|
||||
{
|
||||
if ((timer_init() != DTM_SUCCESS) || (radio_init() != DTM_SUCCESS))
|
||||
{
|
||||
return DTM_ERROR_ILLEGAL_CONFIGURATION;
|
||||
}
|
||||
m_new_event = false;
|
||||
m_state = STATE_IDLE;
|
||||
m_packet_length = 0;
|
||||
|
||||
// Enable wake-up on event
|
||||
SCB->SCR |= SCB_SCR_SEVONPEND_Msk;
|
||||
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
uint32_t dtm_wait(void)
|
||||
{
|
||||
// Enable wake-up on event
|
||||
SCB->SCR |= SCB_SCR_SEVONPEND_Msk;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
// Event may be the reception of a packet -
|
||||
// handle radio first, to give it highest priority:
|
||||
if (NRF_RADIO->EVENTS_END != 0)
|
||||
{
|
||||
NRF_RADIO->EVENTS_END = 0;
|
||||
NVIC_ClearPendingIRQ(RADIO_IRQn);
|
||||
|
||||
if (m_state == STATE_RECEIVER_TEST)
|
||||
{
|
||||
NRF_RADIO->TASKS_RXEN = 1;
|
||||
if ((NRF_RADIO->CRCSTATUS == 1) && check_pdu())
|
||||
{
|
||||
// Count the number of successfully received packets
|
||||
m_rx_pkt_count++;
|
||||
}
|
||||
// Note that failing packets are simply ignored (CRC or contents error).
|
||||
|
||||
// Zero fill all pdu fields to avoid stray data
|
||||
memset(&m_pdu, 0, DTM_PDU_MAX_MEMORY_SIZE);
|
||||
}
|
||||
// If no RECEIVER_TEST is running, ignore incoming packets (but do clear IRQ!)
|
||||
}
|
||||
|
||||
// Check for timeouts:
|
||||
if (mp_timer->EVENTS_COMPARE[0] != 0)
|
||||
{
|
||||
mp_timer->EVENTS_COMPARE[0] = 0;
|
||||
}
|
||||
else if (mp_timer->EVENTS_COMPARE[1] != 0)
|
||||
{
|
||||
// Reset timeout event flag for next iteration.
|
||||
mp_timer->EVENTS_COMPARE[1] = 0;
|
||||
NVIC_ClearPendingIRQ(m_timer_irq);
|
||||
return ++m_current_time;
|
||||
}
|
||||
|
||||
// Other events: No processing
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
uint32_t dtm_cmd(dtm_cmd_t cmd, dtm_freq_t freq, uint32_t length, dtm_pkt_type_t payload)
|
||||
{
|
||||
// Save specified packet in static variable for tx/rx functions to use.
|
||||
// Note that BLE conformance testers always use full length packets.
|
||||
m_packet_length = (m_packet_length & 0xC0) | ((uint8_t)length & 0x3F);
|
||||
m_packet_type = payload;
|
||||
m_phys_ch = freq;
|
||||
|
||||
// Clean out any non-retrieved event that might linger from an earlier test
|
||||
m_new_event = true;
|
||||
|
||||
// Set default event; any error will set it to LE_TEST_STATUS_EVENT_ERROR
|
||||
m_event = LE_TEST_STATUS_EVENT_SUCCESS;
|
||||
|
||||
if (m_state == STATE_UNINITIALIZED)
|
||||
{
|
||||
// Application has not explicitly initialized DTM,
|
||||
return DTM_ERROR_UNINITIALIZED;
|
||||
}
|
||||
|
||||
if (cmd == LE_RESET)
|
||||
{
|
||||
// Note that timer will continue running after a reset
|
||||
dtm_test_done();
|
||||
if (freq == 0x01)
|
||||
{
|
||||
m_packet_length = length << 6;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_packet_length = 0;
|
||||
}
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
if (cmd == LE_TEST_END)
|
||||
{
|
||||
if (m_state == STATE_IDLE)
|
||||
{
|
||||
// Sequencing error - only rx or tx test may be ended!
|
||||
m_event = LE_TEST_STATUS_EVENT_ERROR;
|
||||
return DTM_ERROR_INVALID_STATE;
|
||||
}
|
||||
m_event = LE_PACKET_REPORTING_EVENT | m_rx_pkt_count;
|
||||
dtm_test_done();
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
if (m_state != STATE_IDLE)
|
||||
{
|
||||
// Sequencing error - only TEST_END/RESET are legal while test is running
|
||||
// Note: State is unchanged; ongoing test not affected
|
||||
m_event = LE_TEST_STATUS_EVENT_ERROR;
|
||||
return DTM_ERROR_INVALID_STATE;
|
||||
}
|
||||
|
||||
// Check for illegal values of m_phys_ch. Skip the check if the packet is vendor spesific.
|
||||
if (payload != DTM_PKT_VENDORSPECIFIC && m_phys_ch > PHYS_CH_MAX)
|
||||
{
|
||||
// Parameter error
|
||||
// Note: State is unchanged; ongoing test not affected
|
||||
m_event = LE_TEST_STATUS_EVENT_ERROR;
|
||||
return DTM_ERROR_ILLEGAL_CHANNEL;
|
||||
}
|
||||
|
||||
m_rx_pkt_count = 0;
|
||||
|
||||
if (cmd == LE_RECEIVER_TEST)
|
||||
{
|
||||
// Zero fill all pdu fields to avoid stray data from earlier test run
|
||||
memset(&m_pdu, 0, DTM_PDU_MAX_MEMORY_SIZE);
|
||||
radio_prepare(RX_MODE); // Reinitialize "everything"; RF interrupts OFF
|
||||
m_state = STATE_RECEIVER_TEST;
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
if (cmd == LE_TRANSMITTER_TEST)
|
||||
{
|
||||
// Check for illegal values of m_packet_length. Skip the check if the packet is vendor spesific.
|
||||
if (payload != DTM_PKT_VENDORSPECIFIC && m_packet_length > DTM_PAYLOAD_MAX_SIZE)
|
||||
{
|
||||
// Parameter error
|
||||
m_event = LE_TEST_STATUS_EVENT_ERROR;
|
||||
return DTM_ERROR_ILLEGAL_LENGTH;
|
||||
}
|
||||
|
||||
// Note that PDU uses 4 bits even though BLE DTM uses only 2 (the HCI SDU uses all 4)
|
||||
m_pdu.content[DTM_HEADER_OFFSET] = ((uint8_t)m_packet_type & 0x0F);
|
||||
m_pdu.content[DTM_LENGTH_OFFSET] = m_packet_length;
|
||||
|
||||
switch (m_packet_type)
|
||||
{
|
||||
case DTM_PKT_PRBS9:
|
||||
// Non-repeated, must copy entire pattern to PDU
|
||||
memcpy(m_pdu.content + DTM_HEADER_SIZE, m_prbs_content, m_packet_length);
|
||||
break;
|
||||
|
||||
case DTM_PKT_0X0F:
|
||||
// Bit pattern 00001111 repeated
|
||||
memset(m_pdu.content + DTM_HEADER_SIZE, RFPHY_TEST_0X0F_REF_PATTERN, m_packet_length);
|
||||
break;
|
||||
|
||||
case DTM_PKT_0X55:
|
||||
// Bit pattern 01010101 repeated
|
||||
memset(m_pdu.content + DTM_HEADER_SIZE, RFPHY_TEST_0X55_REF_PATTERN, m_packet_length);
|
||||
break;
|
||||
|
||||
case DTM_PKT_VENDORSPECIFIC:
|
||||
// The length field is for indicating the vendor specific command to execute.
|
||||
// The frequency field is used for vendor specific options to the command.
|
||||
return dtm_vendor_specific_pkt(length, freq);
|
||||
|
||||
default:
|
||||
// Parameter error
|
||||
m_event = LE_TEST_STATUS_EVENT_ERROR;
|
||||
return DTM_ERROR_ILLEGAL_CONFIGURATION;
|
||||
}
|
||||
|
||||
// Initialize CRC value, set channel:
|
||||
radio_prepare(TX_MODE);
|
||||
// Set the timer to the correct period. The delay between each packet is described in the
|
||||
// Bluetooth Core Spsification version 4.2 Vol. 6 Part F Section 4.1.6.
|
||||
if ((m_packet_length + DTM_ON_AIR_OVERHEAD_SIZE ) * 8 <= 376)
|
||||
{
|
||||
mp_timer->CC[0] = 625; // 625uS with 1MHz clock to the timer
|
||||
}
|
||||
else if ((m_packet_length + DTM_ON_AIR_OVERHEAD_SIZE ) * 8 <= 1000)
|
||||
{
|
||||
mp_timer->CC[0] = 1250; // 625uS with 1MHz clock to the timer
|
||||
}
|
||||
else if ((m_packet_length + DTM_ON_AIR_OVERHEAD_SIZE ) * 8 <= 1624)
|
||||
{
|
||||
mp_timer->CC[0] = 1875; // 625uS with 1MHz clock to the timer
|
||||
}
|
||||
else
|
||||
{
|
||||
mp_timer->CC[0] = 2500; // 625uS with 1MHz clock to the timer
|
||||
}
|
||||
|
||||
// Configure PPI so that timer will activate radio every 625 us
|
||||
NRF_PPI->CH[0].EEP = (uint32_t)&mp_timer->EVENTS_COMPARE[0];
|
||||
NRF_PPI->CH[0].TEP = (uint32_t)&NRF_RADIO->TASKS_TXEN;
|
||||
NRF_PPI->CHENSET = 0x01;
|
||||
m_state = STATE_TRANSMITTER_TEST;
|
||||
}
|
||||
return DTM_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
bool dtm_event_get(dtm_event_t *p_dtm_event)
|
||||
{
|
||||
bool was_new = m_new_event;
|
||||
// mark the current event as retrieved
|
||||
m_new_event = false;
|
||||
*p_dtm_event = m_event;
|
||||
// return value indicates whether this value was already retrieved.
|
||||
return was_new;
|
||||
}
|
||||
|
||||
|
||||
// =================================================================================================
|
||||
// Configuration functions (only for parameters not definitely determined by the BLE DTM standard).
|
||||
// These functions return true if successful, false if value could not be set
|
||||
|
||||
|
||||
/**@brief Function for configuring the output power for transmitter test.
|
||||
This function may be called directly, or through dtm_cmd() specifying
|
||||
DTM_PKT_VENDORSPECIFIC as payload, SET_TX_POWER as length, and the dBm value as frequency.
|
||||
*/
|
||||
bool dtm_set_txpower(uint32_t new_tx_power)
|
||||
{
|
||||
// radio->TXPOWER register is 32 bits, low octet a signed value, upper 24 bits zeroed
|
||||
int8_t new_power8 = (int8_t)(new_tx_power & 0xFF);
|
||||
|
||||
// The two most significant bits are not sent in the 6 bit field of the DTM command.
|
||||
// These two bits are 1's if and only if the tx_power is a negative number.
|
||||
// All valid negative values have the fourth most significant bit as 1.
|
||||
// All valid positive values have the fourth most significant bit as 0.
|
||||
// By checking this bit, the two most significant bits can be determined.
|
||||
new_power8 = (new_power8 & 0x30) != 0 ? (new_power8 | 0xC0) : new_power8;
|
||||
|
||||
if (m_state > STATE_IDLE)
|
||||
{
|
||||
// radio must be idle to change the tx power
|
||||
return false;
|
||||
}
|
||||
|
||||
m_tx_power = new_power8;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Function for selecting a timer resource.
|
||||
* This function may be called directly, or through dtm_cmd() specifying
|
||||
* DTM_PKT_VENDORSPECIFIC as payload, SELECT_TIMER as length, and the timer as freq
|
||||
*
|
||||
* @param[in] new_timer Timer id for the timer to use: 0, 1, or 2.
|
||||
*
|
||||
* @return true if the timer was successfully changed, false otherwise.
|
||||
*/
|
||||
bool dtm_set_timer(uint32_t new_timer)
|
||||
{
|
||||
if (m_state > STATE_IDLE)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return dtm_hw_set_timer(&mp_timer, &m_timer_irq, new_timer);
|
||||
}
|
||||
|
||||
/// @}
|
||||
#endif // NRF_MODULE_ENABLED(BLE_DTM)
|
||||
Reference in New Issue
Block a user